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Abstract
To implementing the deep learning neuron network on the hardware, Computing
in memory is a state-of-art method to efficiently increase the computation performance.
However, there exists several issues causing bottleneck for CIM computation in deep
learning. To implementing cloud deep learning, which does require high-precision
multiply-accumulation like floating point MAC, CIM may not perform as well as edge
deep learning (edge deep learning require more integer computation instead of floating-

point computation).

In order to improve the performance of the CIM, therefore, we introduce three
supplement circuits to eliminate the disadvantage in floating point computation: (1) pre-
alignment circuit (2) Booth encoding data conversion circuit (3) hierarchy structure for
floating point mode and integer mode switching. Pre-alignment circuit makes the input
of the CIM be able to operate like the integer. Thus, this circuit would make the CIM
computation to be alignment free. Besides, the Booth encoding method may
significantly reduce the multiplication computation process. Lastly, the hierarchy
structure may combine the FP engine and INT engine. We may switch the mode of
computation simply by some control signal instead of switching the engine. As a result,
this structure may reduce the overhead area of the CIM. Finally we achieve a low power

consumption and small area module by using Verilog simulation.



Introduction

First, let’s take the overview of the whole structure shown in Fig. 1.We have
already stored all the data that we are going to compute in the small storage. The
exponent stored in the exponent storage and mantissa and sign storage store in the
mantissa and sign storage. The pre-alignment circuit directly access the data from each
storage. After aligning the data, we use the booth encoder to encode the input than send
each data to the CIM Macro. CIM do the MAC computation then send the result to the
Subarray Adder. Subarray Adder add the compensation sum back to the output value.
Later, the Macro Accumulator shift and add the output from different cycle. After those

process, we can obtain the result of the calculation.
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Fig. 1: Overview of the structure



(1) pre-alignment circuit

To understand the three introduced circuits, we first look at the previous CIM
design. When CIM are calculating the floating point, we have the input in the form of
{Exponent, Sign, Mantissa}. While we are using CIM to do the MAC operation we
need to align the multiplication result before accumulation. This alignment operation is
resource consuming. Thus, we come up with our first supplement circuit “pre-alignment
circuit”. If we can align all the input before entering the Memory, we can use the same
operation of computing integers in CIM, creating the alignment-free CIM. To make a
proper pre-alignment, we first find the maximum exponential value of the input and
shift other input exponent relative to the maximum exponential to achieve the pre-
alignment input. Another advantage of using pre-alignment method is that we may
possibly lose less overflow bits in the pre-alignment system. We first access the
exponent data from the input exponent storage. We have 32 input ports for each pre-
alignment unit. In order to find out the maximum exponent, we construct the
comparison tree to find out the maximum exponent. After finding the maximum
exponent, we use the maximum exponent to subtract each exponent. The yield results
would be the aligned data. We also keep the Emax value in order to calculate the final
E out. Later, we shift the mantissa base on its output value of Emax — E. The output
value of the E_out will be equal to Emax + Ewmax (max Exponent of weight) — 127.

This value would be the exponent of all the data computing in the Memory.
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Fig. 2: The pre-alignment circuit



(i1) Booth encoder

Original multiplication required multiplying each digit and adding and shifting
each digit. Introducing the Booth encoding may change the adding and shifting
operation to adding/subtracting and shifting operation (Base on Radix-4 Booth). We
may see the example as follows:

M x2b'011111 =M x (2* + 23+ 22 +21 + 29 =M x 31 (1)

M X 2b'011111 = M x 2b'(100000 — 1) = M X (2% 42 —4%) = M x 31 (2)
From this example, we may clearly see that original we need to accumulate for five
time in the (1) formula. However, if we encode the data to the second form, it only
requires two accumulations to obtain the final result. This alternation may reduce the

number of adding operation. We have the encoder truth table as the following Table 1.

Table 1: Encoder Truth Table

i+1 1 i-1 NEG TWO ZERO
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 1




Having the booth encoder, our cycle for inputting data will decrease causing our
amount of computation in the Memory will significantly decrease, achieving better
results in CIM computation.

We use the logic circuit below to implement the function of the truth table. Our
booth encoder has several output ports. They are NEG, TWO, ZERO, Compensation
SUM (for each three digits we have one NEG, TWO and ZERO, but only one
Compensation sum for the whole). NEG and TWO would be sent to the CIM MACRO
as its input for each column of the memory. In the first cycle, we would obtain two
digits of input. From the Fig2.2-3 we may know that we may obtain a new NEG, TWO
and ZERO in each cycle. We encode the input in the encoder region obtaining NEG,
TWO and ZERO. To calculate the compensation, we connect the out put of the encoder
to another logic called compensation. From the compensation circuit, we obtain the
partial compensation. After computing all the partial compensation, we add up all the

compensations and obtain the compensation sum.
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(i11) CIM simulation & control Signal

Since we don’t have the direct cell-base module of CIM to implement. We use the
behavior model to simulate the SRAM CIM array. How we simulate the CIM
operation is shown in the Fig.2.2-5. We may see that we have two inputs which is NEG
and TWO. We have the weight already stored in each CIM element (in the figure, W is
the weight). With different inputs we have related output.

After building the behavior model of the CIM elements, we construct the
whole SRAM-CIM ARRAY. The configuration of the input and output of SRA
M CIM is shown in Fig.4
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Fig.4 CIM Array



After the computation in the CIM Array, we sent the data to the subarray adder.
The subarray adder transforms the input data P into the output data Q. From the Booth
encode part we have the output of compensation. The compensation value is not
involved in the CIM computation. We process the compensation in the Subarray Adder.
In the Fig6, we may clearly see how we transform the P into Q. As w know, there are 8
different channels in each row. Thus, before entering the 12b Adder, we have to wait

for all 8 data to complete transformed. The circuit of Accumulator and Subarray adder

are shown in Fig.5
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Fig.5 Accumulator and SubArray Adder

With the help of supplement circuits, we successfully overcome several problems
in floating point computation in CIM. The pre-alignment circuit deduct the alignment

process in CIM. The Booth encoding process reduce the computation cycle. The control

signal in subarray adder helps us to switch mode without constructing two engines for

floating point computation and integer computation.
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Results

Number of ports:

Number of nets:

Number of cells:

Number of combinational cells:
Number of sequential cells:
Mumber of macros/black boxes:
Number of buf/inv:

Number of references:

Combinational area: ".E?dﬂgq
Buf/Inv area: 38.885143
Moncombinational area: 29166.423332
Macro/Black Box area: . Boaeea
Net Interconnect area: undefined (Mo wire load specified)

Total cell area: 77493.898327

Net Switching Power

Cell Internal Fower

Cell Leakage Power
Intrinsic Leakage
Gate Leakage

Total Power .5 3 (188.88%)

Fig.5-2 The power consumption of the simulation
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