DNN Accelerator Design and Implementation

TR BT 4R M B8 A IR B A LR AF

HABAR ~ Takk
15 3t kB AR

Abstract

With artificial intelligence getting huge progress and widespread recognition, machine
learning, a major subfield of artificial intelligence, has proven to be the technical basis. Among
different fields in machine learning, deep neural network has the most applications and research
centered around it. In the past, graphic processing units are used as the hardware for computing
machine learning model trainings, they reach a far better performance compare to that of central
processing units. However, in recent years, more deep learning developments in software and
hardware have been conducted to make artificial intelligence processing unit, called Al chip or
simply accelerators. The main purpose for these kinds of processors are that they serves an
overall better power efficiency and greater computational performances.

RS

Al%%&ﬁ@%%?%k%%&u&ﬁ* MALESE L P I URRLTAED
B F T H R o P R R A 4 M ER T A 2 ﬁﬂ@ﬁﬁ%%@%%ﬁﬁ%%%%%io@%
HEN RIS AT REIRA B EEN T RATEE BT ERA P S
EHRELEVHBHOAISERES MR E > HBMRAL T AMEL LY ik
PIEIT B B RE LR IR o

Introduction

With the application of artificial intelligence (Al) starting to prosper in recent years,
scientific research on related field has grown by a significant amount. The foundation of such
growth, which is a major subfield of Al, is machine learning (ML). While researchers in ML
continues to innovate structures and models, deep neural networks (DNNs) remain in the most
crucial part of the neural network subfield. As the name DNN indicates, DNN is deep as in the
number of layers. To a general consensus, a model with more than or equal to three layers can
be called DNN. There are two main types of layers, convolution layer (CONV or CL) and fully
connected layer (FC or FCL). Within each layer, some numerical calculations would be
appended at the end for quantization, simplification and nonlinearity, these include pooling and
activation functions.

The above mentioned DNN models are originally trained and tested on graphic processing
units (GPUs) and achieved high efficiency compared with central processing units (CPU).
However, GPUs are still not specifically designed to compute DNNs, therefore a number of
application specific integrated circuits (ASIC) arise. Some famous examples include but not
limited to Google’s tensor processing unit (TPU), MIT’s Eyeriss series and KAIST neural
processing unit (NPU) series. Among these processors, some aim to achieve high computational
speed while some aim to achieve low power and energy efficiency.

The result is organized in the following sequence. We first go through some background
analysis on how an accelerator is constructed and the overall hardware architecture that is
essential to process a DNN model. Next we explain the reasoning behind the model chosen to
be realized and the dataset we intended to test on. After that, we dig into details on the

description and implementation of each layer and hardware structure by our design. These
include the fundamental of an accelerator, processing element (PE), which is used to do most of
the multiply-and-accumulate (MAC), pooling and activation function in DNN models, memory
segments for weight/filter loader, input activation/feature map loader and bufter to the off chip
DRAM. Following is the integration on different parts within the accelerators. An hardware

implemented result and result from software is compared for an individual layer, overall output
may be included if outcome came out in time as desire. Last but not least is the lesson learned
throughout the course year in special topic implementation I & 11 following up with future work
roadmap and improvement as in how we could have done and modification on our work.

Loade

Weight

N
M

Input Feature
Map Loader

N
v

PE

v

PE

M

.pE

1>

v

PE

PE

"
v

"
v

"
v

*
v

PE

v

PE

. PE

PE

PE

M
3x

M
3

M
3

M
3

M
x

v

PE

PE

I pE

PE

PE

M
" 2

M
" 2

M
" 2

M
3

M
X

I PE

PE

.l PE

PE

PE

1
K 7

1
K 7

1
K 7

1
7

1
k7

| PE

>4

PE

- PE

>4

PE

>]

PE

Figure 1. Systolic array of the accelerator

Weight Loading Sequence

4

3

2

1

0

0

1

0/0/0

—

+ 0/0/0

0/0/0
/0

| 0/0/0
/0

Input Feature Map Filter Partial Sum
1 2 3 1 2 37 47
4 5 6 3 4 67 77
7 8 9
Weight Loader
S5 : : T=0
4% '§ — PE PE ifmap / weight / psum_o Input Feature Map Loading Sequence
ol . - _ . olols|7|s|5]4]] o
g_ o pE P:E ifmap / weight / psum_i / psum_o
£=2 ' 1
y 6|5/4l3|2]1]o|| ©
Partial D Partial
Sum J. Sum
Partial Sum
Buffer

v

Figure 2. Example of dataflow for convolution layer (3x3 input feature map and 2x2 filter)

3 AF R A

BB — T RE)EARINR - AR SR 4E 0 AR ARAT S A R B R B 2R3

s BRCEEIE S M BRER TN AR B L EIEL 0 BT — 2
%o BERR LAARFIESHAR T > L RER LA —BMABRT ARG o —F
I RIERATF > EFBNRELIEEHITHTRENZREREE R AL
1% F il EAEME — B B MER AR ST MBI AT A BN TG
TF o fimkBrdm BATAEH R LG — BTN ERN SR T A THEAMEREY -
2 KL REERT TR B DA AR M Bt e &
RMAABRAGPBARR > AEFR#EHIER M A THETEHR - LA WERA Aagsnd o
BRI AR —FEATERESFUARBEB T MR - R TEMBH GBI SR
DS 0 AR TR E AR R R S > THE A R iuidof T+ 0 BT LA
BAFHREEFTCEAARENBEBELRT > FMUAREZERAINANHARRE > R
RENEIN T EAFSBETUMIA FFARMIAREEEH I EAET —EERSL > ARE
FETUBE R EL AP ETRTENEL o

4

t
LA
%5

