

國立清華大學 電機工程學系

實作專題研究成果摘要

An Efficient Hardware-Friendly Design of Vision Transformer With

Integer-Only Computation and Optimized Tiling

基於整數運算與最佳化 Tiling 的高效且

硬體友善 Vision Transformer 設計

專題領域： 系統領域

組 別 ： A501

指導教授： 黃稚存 教授

組員姓名： 張朝威

研究期間： 2024年7月1日至 2025年5月1日止，共10個月

i

Contents

摘要 .. ii

Abstract .. iii

1 Introduction .. 1

2 Methodology ... 2

2-1 An overview: Vision Transformer(ViT)[8-10] ... 2

2-1.1 Multi-Head Self-Attention (MSA) ... 2

2-1.2 Feed-Forward Network (FFN) .. 3

2-2 An overview: Hardware Implementation of ViT .. 3

2-3 Hardware Implementation of Exponential Function ... 4

2-4 Hardware Implementation of SoftMax .. 5

2-5 Hardware Implementation of MatMul ... 6

3 Experimental Result ... 7

3-1 Software simulation .. 7

3-2 Hardware simulation of submodule design .. 7

3-3 Hardware simulation of MSA module design ... 8

Conclusion ... 9

References ... 10

ii

摘要

Vision Transformer(ViT)近年來已成為與卷積神經網路（CNN）齊名的影像分類架構。

然而，Transformer 相較於 CNN 結構更為複雜且資源需求較高，因此許多研究致力於

降低其計算複雜度。I-ViT 為首篇完整以整數方式近似 ViT 中所有非線性函數的研究，

不僅整合了先前提出的 LayerNorm 近似方法，更透過以 2 為基底的轉換簡化了指數

函數的實現，並提供了 SoftMax 與 GeLU 的一種新的近似方式。[1]

然而，I-ViT 的近似設計仍包含部分不利於硬體實作的操作，例如倒數計算與大量

的乘除法運算。本研究在 I-ViT 架構的基礎上，提出一個針對 Vision Transformer (ViT)

中Multi-Head Self-Attention（（MSA）部分的 FPGA 硬體友善設計。延續 I-ViT 的資料

格式，本研究採用 8 位元整數的量化方法，並針對指數與除法等複雜運算進行簡化與

優化。在指數函數部分，本研究提出三級管線指數模組架構以加速運算（。時，，使用七

個平行指數模組，實現僅用 66 個，脈週期便能完成 196 筆資料的 SoftMax 運算。在

矩陣乘法方面，我們利用 tiling 方式對矩陣分割並設計特殊的，序安排，透過優化的

MatMul 硬體設計，時，處理 Q×K 與 SoftMax(QK)×V 的乘法，有效提升整體運算效

率。

關鍵字: Transformer, 硬體加速, 量化, 低精度近似

iii

Abstract

In recent years, Vision Transformer(ViT) has emerged as a leading architecture for image

classification, rivaling Convolutional Neural Networks (CNNs). However, compared to CNNs,

Transformers are more complex and resource-intensive, prompting many studies focused on

reducing their computational complexity. I-ViT is the first work to fully approximate all

nonlinear functions in ViT using integer-only operations. It not only integrates previously

proposed LayerNorm approximations but also simplifies the implementation of exponential

functions using base-2 transformations and provides a new approximation methods for SoftMax

and GeLU functions. [1]

Despite these advancements, I-ViT still contains certain operations that are not hardware-

friendly, such as reciprocal computations and extensive use of multiplication and division.

Building on the I-ViT framework, this study proposes a hardware-efficient FPGA design

targeting the Multi-Head Self-Attention mechanism in ViT. We adopt the same 8-bit integer

quantization format used in I-ViT and further simplify and optimize the operations such as

exponentiation and division.

For the exponential function, we propose a 3-stages pipelined exponential modules

architecture to accelerate computation and employ seven parallel exponential modules, enabling

SoftMax computation on 196 inputs in just 66 clock cycles. For matrix multiplication, we apply

tiling techniques to partition matrices and proposed a dedicated timing schedule that allow the

system to process Q×K and SoftMax(QK)×V operations concurrently, enhancing overall

computational efficiency.

Keywords: Transformer, Hardware Accelerator, Quantization, low-precision approximation

1

1 Introduction

In recent years, Vision Transformer(ViT), which applies the Transformer architecture to

image classification by treating an image as a sequence of patches rather than using traditional

convolutional neural networks, have achieved state-of-art performance on image classification

tasks. However, their high computational cost and memory requirements lead to significant

challenges for hardware implementation, particularly on resource-constrained platforms such

as FPGAs and edge devices.

To address these limitations, several quantization methods have been proposed to optimize

ViT inference for efficient hardware execution. Notable approaches include powers-of-two

scale quantization and log-int quantization for LayerNorm and Softmax in FQ-ViT[2], as well

as the data-free quantization method introduced in PSAQ-ViT.[3, 4] However, most of the

quantization methods mentioned above rely on floating-point operations and requires

substantial computational power and memory bandwidth. Some works attempt to develop

architectures with fixed-point-only arithmetic, making the design more hardware-friendly. For

instance, I-BERT employs polynomial approximation for non-linear functions[5, 6], and Fully8-

bit employs integer-only inference for L1 LayerNorm.[7]

One integer-only quantization architecture, proposed by I-ViT, replaces most complex

non-linear arithmetic with linear approximations and simplifies computations using shift

operations, significantly reducing computational complexity.[1] However, despite these

optimizations, I-ViT still retains reciprocal and division operations in its partial non-linear

approximation, which introduces inefficiencies in hardware implementation.

Hence, this work aims to further enhance integer-only ViT inference by proposing a more

hardware-efficient architecture with the following key contributions:

• Optimized Multi-Head Self-Attention (MSA) in I-ViT: Eliminating the reciprocal-

based operations present in I-ViT and reducing the number of division operations to

improve computational efficiency.

• Optimized Tiling-Based Method: Propose an efficient tiling strategy that effectively

partitions the computation workload, optimizing memory access patterns and

improving hardware execution efficiency while maintaining the same level of model

performance.

By refining these aspects, this study aims to further bridge the gap between high-

performance deep learning models and efficient hardware-friendly implementations.

2

2 Methodology

2-1 An overview: Vision Transformer(ViT)[8-10]

Vision Transformer is one popular deep learning model that applies the transformer

architecture to image classification tasks, leveraging self-attention mechanisms to capture

global dependencies across image patches. Unlike CNNs, which rely on local receptive fields,

ViT treats an image as a sequence of patches and processes them using Multi-Head Self-

Attention (MSA) and a Feed-Forward Network (FFN) within the transformer encoder as shown

in Fig1.

Fig1. The fundamental Architecture of Vision Transformer. The input image is

first divided into non-overlapping patches ,and embedded linearly with

positional encodings. These tokenized patches are then fed into a stack of

Transformer encoder layers, consisting of MSA and FFN. The Pre-

Normalization method and the residual connection are applied in this model to

mitigate the model degradation and ensuring efficient convergence.

2-1.1 Multi-Head Self-Attention (MSA)

Consider a ViT model with h heads, and given an input sequence of patch embeddings

𝑋 ∈ ℝ𝑁×𝐷, where N is the number of patches and D is the embedding dimension. The three

input matrixs query(Q), key(K), and value(V) obtained by linear transformations are prepared

as the input of the self-attention mechanism:

{

𝑄 = 𝑋𝑊𝑄

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

with learnable weight matrices 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉 ∈ ℝ𝑁×𝑑𝑘 and 𝑑𝑘 is the number of patches

divided by the number of heads.

3

 The self-attention mechanism starts with the inner products of Q and K matrix. Then, the

Softmax operation is applied on the product result. Then, the result of previous operation

product with V matrix is treated as the output of the self-attention mechanism. Hence, the self-

attention mechanism can be represented as the following formula:

Attention(Q, K, V) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
⁄) V

The division by √𝑑𝑘 ensures numerical stability by scaling the dot product.

Finally, combine the result of multiple self-attention operations into the outpu of multi-

head self-attention through a weight matrix 𝑊𝑐𝑜𝑛𝑐𝑎𝑡 ∈ ℝℎ𝑑𝑘×𝐷:

𝑀𝑆𝐴(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑐𝑜𝑛𝑐𝑎𝑡

2-1.2 Feed-Forward Network (FFN)

Following the MSA module, ViT employs a Feed-Forward Network to further process the

extracted features. The FFN consists of two fully connected layers with a non-linear GELU

activation function in between:

FFN(𝑋) = 𝐺𝐸𝐿𝑈(𝑋𝑊1 + 𝑏𝑖𝑎𝑠1)𝑊2 ＋ 𝑏𝑖𝑎𝑠2

where 𝑋 is the output of the MSA after the LayerNorm process with residual connection,

𝑊1 ∈ ℝ𝐷×𝐷ℎ𝑖𝑑𝑑𝑒𝑛 and 𝑊2 ∈ ℝ𝐷ℎ𝑖𝑑𝑑𝑒𝑛×𝐷 are weight matrices, 𝑏𝑖𝑎𝑠1 and 𝑏𝑖𝑎𝑠2 are bias

terms. The FFN enhances the model’s expressiveness by applying non-linear transformations

to the feature representations.

Both the MSA and FFN components are wrapped within residual connections and layer

normalization:

𝑋′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝑀𝑆𝐴(𝑋))

𝑋′′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋′ + 𝑀𝑆𝐴(𝑋′))

where layer normalization stabilizes training by normalizing activations across feature

dimensions.

2-2 An overview: Hardware Implementation of ViT

This work focuses on the hardware implementation and optimization of the MSA module

in ViT. The proposed system hierarchy, shown in Fig. 2, is designed to efficiently process input

tokens through a structured pipeline. First, the input tokens are multiplied by their

corresponding weights using the PE block, after which the resulting Q, K, and V matrices are

stored in registers. The designed MatMul module (Sec. 2-5) then performs the QKT matrix

operation, feeding the output into a non-linear SoftMax or GeLU function(Sec. 2-2 and 2-4)

before executing the final matrix multiplication.

To maintain the residual connections in the original ViT algorithm, an adder combines the

final MatMul output with the original input tokens. Additionally, for greater efficiency, the

proposed system hierarchy is designed to support both the MSA(Fig. 2(a)) and FFN(Fig. 2(b))

4

layers in ViT, integrating both the SoftMax and GeLU blocks. A more detailed design of each

submodule is provided in Sections 2.3 to 2.5.

Fig2. System Hierarchy. The proposed hardware architecture for ViT supports

both the MSA and FFN modules. The top section presents the overall system

hierarchy. Subfigure (a) illustrates the data flow in the MSA stage, where input

tokens are processed to generate Q, K, and V, followed by matrix multiplication

and non-linear transformations. Subfigure (b) shows the data flow in the FFN

stage.

2-3 Hardware Implementation of Exponential Function

 Traditional methods for implementing exponential functions in digital circuits typically

rely on lookup tables or polynomial approximation methods[5, 6]. While LUT-based approaches

enable direct function value lookups, they require substantial hardware resources, making them

inefficient for resource-constrained designs. Alternatively, polynomial approximation methods

utilize polynomial expansions to approximate exponentiation but necessitate multiple

multipliers, leading to high computational complexity and increased hardware utilization.

To address these challenges, various low-precision approximation techniques have been

developed based on the logarithmic-exponential transformation.[1, 11] Considering the hardware

resource limitations on FPGA, an efficient hardware-aware implementation is required. The

low-precision approximation method is applied in this study leveraging exponential-

logarithmic base conversion to achieve a hardware-friendly and resource-efficient design.

Consider the input to the exponential function is quantized into INT8 format with scaling

factor SF. The first step is to convert the base of the target result from e to 2. The multiplication

in the exponent term can be simply performed by shifting operation since log2e can be

5

approximated by binary as (1.0111)2.
[1] The calculation can be represented as

𝑒𝑆𝐹∆𝐼∆ = 2𝑆𝐹∆𝐼∆𝑙𝑜𝑔2𝑒 ≈ 2𝑆𝐹∆(𝐼∆ + 𝐼∆≫1 − 𝐼∆≫4) = 2𝑆𝐹∆𝐼𝑝

Since the result of the multiplication in the exponent term may not be an integer, it cannot

be directly used for shifting. To overcome this, the exponent term 𝑆∆𝐼𝑝 is decomposed into

an integer part q and a decimal part r as follows, simplifying the computation as follows :

2S∆Ip = 2−(q + r) = 2− r ≫ q

where both q and r are positive.

To further reduce the complexity of calculation, the term of 2− r can be approximated as

a linear function −𝑟/2 + 1 if−𝑟 ∈ (−1,0]. Then, according to the relation derived above, the

exponential function can be approximated as

𝑒𝑆∆𝐼∆ ≈ 2𝑆∆𝐼𝑝 = 2− r ≫ q ≈ (−𝑟 ≫ 2 + 1) ≫ 𝑞

2-4 Hardware Implementation of SoftMax

In ViT, the row-wise SoftMax is applied after the matrix multiplication of the Q and K

matrices. Since the input dimension of SoftMax in the DeiT-Tiny model—used as the

evaluation benchmark in this study — is 196 × 196, the SoftMax function processes 196

elements per row. However, directly loading all 196 8-bit numbers at once is not feasible for

hardware implementation due to resource constraints. To address this, the 196 tokens are

divided into 28 groups, with each group containing 7 elements. Recalling the mathematical

representation of the SoftMax function, it can be expressed as follows:

SoftMax(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

=
𝑒𝑆𝑥𝑖

𝐼𝑥𝑖

∑ 𝑒
𝑆𝑥𝑗

𝐼𝑥𝑗
𝑗

To smooth the data distribution and prevent overflow, divide the numerator and

denominator by 𝐼𝑚𝑎𝑥 , which was recorded in the MatMul process stage. The modified

SoftMax function can be represented as

SoftMax(𝑥𝑖) =
𝑒𝑆𝑥𝑖

(𝐼𝑥𝑖
−𝐼𝑚𝑎𝑥)

∑ 𝑒
𝑆𝑥𝑗

(𝐼𝑥𝑗
−𝐼𝑚𝑎𝑥)

𝑗

By applying seven exponential modules introduced in Section 2-3, the exponentiation can

be efficiently implemented in parallel using integer-only arithmetic. Notably, with this method,

the SoftMax function can be realized using only adders, a small number of dividers, and shift

operations, significantly reducing computational complexity.

The design is divided into two states: the accumulation state(ACC) and the division state

(DIV). In the ACC state, the inputs are first processed by the exponential modules after

subtracting 𝐼𝑚𝑎𝑥, and the resulting exponentiated values are accumulated using an adder tree.

Due to the limitations of memory bandwidth and hardware reuse, the exponential of the DIV

6

state as the numerator is not saved in the ACC state, but directly calculated again in the DIV

state through the exponential module. Furthermore, to reduce extra power consumption, the

division unit is disabled via the div_en control signal during this phase.

2-5 Hardware Implementation of MatMul

Consider the multiplication of two matrices, M1 and M2 is the output matrix O. Due to

the linearity of matrix multiplication, the quantized input and scaling factors can be computed

separately:

O = 𝑆𝐹O𝐼O = M1 × M2 = 𝑆𝐹M1
𝐼M1

 × 𝑆𝐹M2
𝐼M2

= (𝑆𝐹M1
× 𝑆𝐹M2

)(𝐼M1
× 𝐼M2

)

where 𝐼M1
 and 𝐼M2

 are the INT8 matrix and 𝑆𝐹M1
 and 𝑆𝐹M2

 remain the floating point

datatype. The result of matrix multiplication O is INT32 formation and will be re-quantilization

back to INT8 formation.

O = 𝑆𝐹O𝐼O(INT8) = 𝑆𝐹′O𝐼′O(INT32) = (𝑆𝐹M1
× 𝑆𝐹M2

)(𝐼M1
× 𝐼M2

)

By applying the dyadic arithmetic pipeline, which approximates floating-point scaling

factor operations by integer bit shifting, scaling factor multiplication can be executed using

integer-only arithmetic:

𝐼O(INT8) = ⌊
𝑆𝐹M1

× 𝑆𝐹M2

𝑆𝐹O
(𝐼M1

× 𝐼M2
)⌋ = ⌊

𝑏

2𝑐 (𝐼M1
× 𝐼M2

)⌋

where b and c are both positive integer values. Then, the matrix multiplication can be calculated

by integer-only arithmetic as following:[1]

O = (𝑏 ∙ (𝐼M1
× 𝐼M2

)) ≫ 𝑐

For hardware implementation, partial sum accumulation and the tiling method are

commonly used to efficiently perform matrix multiplication. Inspired by Column-Wise

MatMul Algorithm proposed in Co-design of Attention Mechanism[12], this study adopts the

row-wise MatMul Algorithm, as it better aligns with the preceding and succeeding stages that

involve row-based operations.

Firstly, consider the matrix dimensions involved in the MatMul of the deit_tiny model.

For instance, the multiplication could be between matrices of size 196 × 196 or 196 × 64 and

64 × 196. The designed MatMul module processes four rows simultaneously. In each cycle, it

loads four elements from the same column of matrix M1 and seven elements from the same

row of matrix M2 to perform multiply-accumulate operations.

Once all elements in a row of M1 are multiplied with the corresponding elements in a

column of M2, a single output element in the result matrix O is computed. This accumulated

result, held at the output of the adder tree, is then output along with a valid signal indicating

completion.

In the DeiT-Tiny model, the input dimensions for MatMul are 196 × 64 and 196 × 196.

Since a subsequent step in the computation involves row-wise operations, a row-wise MatMul

module is proposed, as shown in Fig.3 .

7

Fig.3 Proposed MatMul module. Four elements from a column of M₁ and seven

elements from a row of M₂ are loaded simultaneously. Partial results are

processed through MAC units and accumulated via an adder tree. Four output

rows are computed in parallel to enhance throughput.

3 Experimental Result

3-1 Software simulation

In the software simulation, we used the Fashion MNIST dataset to train the model with a

batch size of 128, a learning rate of 5e-7, momentum of 0.9, and weight decay of 0.0001 for 30

epochs. Without any integer approximation, the model achieved an accuracy of 76.3%. Using

the I-ViT architecture[1], the accuracy improved to 77.91%. Our hardware-friendly

modification achieved a slightly lower accuracy of 77.0%, representing a drop of about 0.9%

compared to I-ViT. However, our model eliminates reciprocal operations in the exponential

module and significantly reduces the number of required multiplication and division units.

3-2 Hardware simulation of submodule design

This study aimed to verify the design on FPGA using Xilinx Vivado 2017.4 for simulation

and synthesis. However, due to time constraints, only simulation was performed and no

verification was performed on FPGA.

In the exponential function, we adopted a 3-stages pipeline architecture. Since the input

is an 8-bit integer containing only negative values, we first generated the golden patterns for

all 128 input combinations using Python. We then verified the hardware outputs against these

reference values.

Similarly, we generate test data through Python to verify the SoftMax function. By

utilizing seven exponential modules in a 3-stages pipeline architecture, the system can

complete the SoftMax operation for 196 values in just 66 cycles. The designed SoftMax module

operates in two main states: ACC and DIV. The ACC state consumes 28 cycles, during which

7 values are loaded at a time, their exponentials are computed, and the results are accumulated

to form the SoftMax denominator. In the following 28 cycles, the DIV state divides each value

8

by the accumulated denominator from the previous stage. Additionally, considering the 5-cycle

latency introduced by the DSP block multipliers, the total latency for completing the SoftMax

operation remains 66 cycles.

In the MatMul function, Regarding the acceleration of matrix multiplication, using the

tiling method, we calculate the elements of four different rows in the output matrix

simultaneously. Since 7 elements are loaded at the same time for calculation, the MatMul

module requires 1793 cycles to complete the operation for the one rows of values output by the

Q and K matrices, and 5489 cycles to complete the operation for the one rows of values output

by the SoftMax(QK) and the V matrix.

3-3 Hardware simulation of MSA module design

As mentioned in Section 3-2, the time required to complete a row of MatMul operations

differs by approximately a factor of three. To address this imbalance, we propose a timing

schedule, as illustrated in Fig.4. In this schedule, three MatMul modules are utilized, one is

dedicated to the multiplication of the Q and K matrices, while the other two operate

concurrently to perform the multiplication of SoftMax(QK) and the V matrix. This parallel

execution effectively optimizes the overall timing arrangement and significantly improves

computational efficiency.

Fig.4 Timing schedule of MSA operations. In this schedule, three MatMul

modules are utilized : one MatMul module computes Q × K, while the other

two concurrently handle SoftMax(QK) × V.

The hardware resource utilization is shown in Table 1 for each major submodule in the

proposed Multi-Head Self-Attention design. Due to the complex approximate of exponential

and normalization operations , the SoftMax module accounts for the majority of logic and flip-

flop consumption, occupying over 90% of hardware resource in the MSA design.

Table 1 Hardware Utilization

 SoftMax QK Matmul QKV Matmul MSA-Module

LUT 25212 890 822 28623

LUTRAM 21 - - 21

FF 26708 220 188 27495

DSP 14 44 44 190

9

Conclusion

This work presents a hardware-friendly MSA accelerator based on a modified version of

the I-ViT approximation.[1] Using the Fashion MNIST dataset for software validation, the

quantized and optimized model achieved an accuracy of 77.0%, with only a slight reduction

of 0.9% compared to the original I-ViT architecture (77.91%) on the DeiT-Tiny baseline.

Notably, the design eliminates reciprocal operations and greatly simplifies the multiplication

and division processes, enhancing hardware efficiency.

In the proposed hardware architecture illustrated in Fig.2, the MSA and FFN are shared

between both the MSA and FFN same computing architecture, reducing hardware redundancy

compared to traditional architectures that allocate separate resources for each stage.

Despite these achievements, the design still faces certain limitations when compared to

more advanced accelerators. The SoftMax module alone consumes over 90% of the total logic

and flip-flop resources, suggesting that further optimizations could substantially reduce area

and power without significantly compromising accuracy.

Additionally, the current implementation focuses only on the MSA component. However,

based on the proposed shared architecture for MatMul and nonlinear modules, we can

reasonably estimate the performance for the full ViT pipeline. At 150 MHz, our MSA

accelerator completes the computation for one head in 0.632 ms. Given that the DeiT-Tiny

model uses 3 heads, the full MSA stage would require approximately 1.896 ms. Although the

FFN stage hardware is not yet fully implemented, we estimate the FFN would require an

additional 0.621 ms based on the MSA and FFN shared architecture. Thus, the total processing

time for one image would be approximately 2.517 ms.

In comparison, running the original FP32 DeiT-Tiny model on an RTX 2080Ti GPU

requires around 5.99 ms per image, while the I-ViT integer-approximated model achieves

inference in 1.61 ms.[1]Although our hardware accelerator improves inference speed by roughly

2.34× over the original model, which seems less than the 3.72× achieved by I-ViT, this

discrepancy is expected. In software, all attention heads can be computed in parallel, while in

our hardware accelerator, the heads are computed sequentially due to resource sharing and

pipeline scheduling. Therefore, the direct comparison of runtime is not entirely one-to-one, and

our design still offers a promising balance between hardware cost, modular reuse, and

performance. Future work will focus on fully integrating the ViT accelerator, optimizing across

all stages, and improving throughput and resource efficiency.

10

References

[1] Z. Li and Q. Gu, "I-vit: Integer-only quantization for efficient vision transformer

inference," in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2023, pp. 17065-17075.

[2] Y. Lin, T. Zhang, P. Sun, Z. Li, and S. Zhou, "Fq-vit: Post-training quantization for

fully quantized vision transformer," arXiv preprint arXiv:2111.13824, 2021.

[3] Z. Li, M. Chen, J. Xiao, and Q. Gu, "Psaq-vit v2: Toward accurate and general data-

free quantization for vision transformers," IEEE Transactions on Neural Networks

and Learning Systems, 2023.

[4] Z. Li, L. Ma, M. Chen, J. Xiao, and Q. Gu, "Patch similarity aware data-free

quantization for vision transformers," in European conference on computer vision,

2022: Springer, pp. 154-170.

[5] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, "I-bert: Integer-only

bert quantization," in International conference on machine learning, 2021: PMLR, pp.

5506-5518.

[6] A. Marchisio, D. Dura, M. Capra, M. Martina, G. Masera, and M. Shafique,

"SwiftTron: An efficient hardware accelerator for quantized transformers," in 2023

International Joint Conference on Neural Networks (IJCNN), 2023: IEEE, pp. 1-9.

[7] Y. Lin, Y. Li, T. Liu, T. Xiao, T. Liu, and J. Zhu, "Towards fully 8-bit integer inference

for the transformer model," arXiv preprint arXiv:2009.08034, 2020.

[8] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image

recognition at scale," arXiv preprint arXiv:2010.11929, 2020.

[9] K. Han et al., "A survey on vision transformer," IEEE transactions on pattern

analysis and machine intelligence, vol. 45, no. 1, pp. 87-110, 2022.

[10] A. Vaswani et al., "Attention is all you need," Advances in neural information

processing systems, vol. 30, 2017.

[11] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, "A high-speed and low-complexity

architecture for softmax function in deep learning," in 2018 IEEE asia pacific

conference on circuits and systems (APCCAS), 2018: IEEE, pp. 223-226.

[12] X. Zhang, Y. Wu, P. Zhou, X. Tang, and J. Hu, "Algorithm-hardware co-design of

attention mechanism on FPGA devices," ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5s, pp. 1-24, 2021.

11

Reflection and Thoughts

First and foremost, I would like to express my sincere gratitude to Prof. Chih-Tsun Huang

for his invaluable guidance throughout the past year. His mentorship has been instrumental in

helping me cultivate a more rigorous and structured approach to both literature review and

hardware system design.

The original objective of this project was to develop a complete hardware accelerator for

the ViT model and validate its performance on an FPGA platform. Due to time constraints, only

the RTL verification of the MSA module was completed, with the FFN module left for future

implementation. Nevertheless, we designed a unified and reusable architecture capable of

supporting both MSA and FFN modules, laying a robust foundation for further development.

This study centers on a hardware-friendly implementation of ViT, leveraging integer-only

computation and an optimized tiling strategy to enhance both efficiency and practicality.

During this project, I investigated the computational bottlenecks of ViT, especially the high

memory bandwidth and arithmetic intensity associated with the MSA mechanism.

While reviewing existing quantization strategies, I found I-ViT to be an effective solution

for reducing design complexity. However, its reliance on reciprocal operations and other

hardware-unfriendly functions posed limitations. Building on I-ViT’s integer quantization

scheme, this work simplifies the circuit by eliminating reciprocal operations and introducing a

refined tiling method to reduce memory access while maintaining parallelism and throughput.

Through this research, I gained valuable experience in digital hardware design,

particularly in balancing trade-offs between accuracy, resource usage, and computational speed.

I also deepened my understanding of how to approximate nonlinear functions using pipelined

architectures and shift-based operations. Although this project successfully optimized the MSA

module for hardware implementation, a key limitation remains in the absence of a completed

FFN module. Future work will focus on extending these hardware optimizations to the FFN,

ultimately aiming to realize a fully hardware-efficient ViT accelerator.

