國立清華大學 電機工程學系實作專題研究成果摘要

A Low-Noise Neural Signal Amplifier with Adjustable Gain and Bandwidth for Capturing AP/LFP Signals Separately

可分別擷取AP/LFP 的可調動增益及頻 帶之低雜訊神經訊號放大器

專題領域:系統領域

組 別:B328

指導教授:鄭桂忠 教授

組員姓名:鄭冠欣、唐振家

研究期間:2023 年 2 月迄今

一、 報告摘要

生物醫療系統已行之有年,然而近年來,隨著積體電路製程的演進及人類對健康管理的需求日增,可攜式或植入式系統儼然成為此類系統中的顯學。其應用面廣泛:如治療帕金森氏症、癲癇、中風等等皆屬於其範疇。在這種植入式系統裝置中,最前端的電路即為生醫放大器。

本次專題研究主要針對腦波 AP/LFP 做擷取,採用了三級式的架構,其中包含 LNA(Low-Noise Amplifier)、BPF(Band-pass Filter)、VGA(Variable gain amplifier),也包含各級中的 pseudo resistor、bias circuit、CMFB 等等的設計。目標擷取頻段 AP/LFP 訂在以下範圍:AP(Action Potential):300~4KHz、LFP(Local Field Potential):20~300Hz,做出分別擷取這兩種波段並且由 VGA做出可調節兩種不同增益大小的放大器,共計四種 mode。

由於生醫晶片使用在大腦內部,因此我們透過將電流壓在 nano 等級,並將 supply voltage 訂在1V,得以降低 power。再來必須考慮到 area、power、noise、PSRR、CMRR 等等的需求進行設計,其中參考了多份的論文文獻與 gm/id 等等的設計方法,因為當製程非常精細之下,需要考量的 region 與效應就會變得較複雜,所以我們嘗試了不同架構,也參考了多篇論文,完成此電路的模擬及下線,此外避免訊號翻轉以及 gain 鎖不準的問題,PM 與 Open loop gain 也是需要謹慎設計的部分。

此次專題研究透過 TSMC $0.18~\mu m$ 之製程實現,根據 post-simulation 結果顯示,神經訊號放大器之增益為42.7dB 以及47.7dB,可調整頻帶下,高通轉角頻率範圍為 $20Hz\sim300Hz$,低通轉角頻率為4kHz,輸入等效雜訊為 $7.17~\mu Vrms$,整體總功耗為 $1.6001\mu W$ 。

二、 背景與動機

隨著現今科技、醫療級半導體產業演進,CMOS技術臻至成熟,植入式生醫品片也逐漸發展,近年從帕金森氏症、阿滋海默症、顏面麻痺、癲癇、神經肌肉性疾病,到中風、癱瘓、眼盲、耳聾、腦科學、疼痛、沮喪、憂鬱症、睡眠疾病、生理訊號監護等等,都納入植入式生醫片的研究範疇中。

此外因為製程越趨先進與微小化,在設計植入式生醫晶片時,Noise 以及 PSR 需要更精細研究,此外需要注意到 Power 等問題,謹慎避免因為高溫破壞到健康腦部細胞的可能。

帕金森氏症(Parkinson's disease),是一種漸進的神經退化性疾病,帕金森 氏症常見的症狀有肌肉顫抖與僵直等等。早期由於較不易發現,因此即時的診 斷出病因是一大課題。討論到引起帕金森氏症的原因,需要知道人腦內需透過 多巴胺來指揮肌肉活動,而帕金森患者由於基底核(basal ganglia)與黑質 (substantial nigra)中的細胞退化或者死亡,造成多巴胺(Dopamine)不正常的分泌, 如果缺乏較足夠的多巴胺,會造成肌肉活動的障礙。

我們的研究主題為帕金森氏症的腦波不正常放電擷取,首先須知目標偵測 波段為 AP(Action potential)、LFP(Local Field Potentials),需要針對此兩種腦波 做分析頻段與振幅分析,進而進行架構選擇與設計,希望將收到訊號進行處理 之後,放大目標波段,以期達到監測患者腦部異常放電,方便進行後續治療手 段。

三、 研究方法

研讀論文並且訂下 spec 和討論架構,選定架構後進行電路設計,設計符合所訂下的 spec 的電路,並且優化電路,pre-simulation 完成後進行 layout 繪製,並且需要補上 dummy 等等,最後進行 post-simulation。確認模擬結果是否符合 spec,符合之後進行晶片下線申請。在等待晶片送回來期間設計 PCB 且找廠商製作 PCB,做好量測前的準備工作等待晶片送回來進行量測,最終完成整個晶片設計的流程。

四、架構

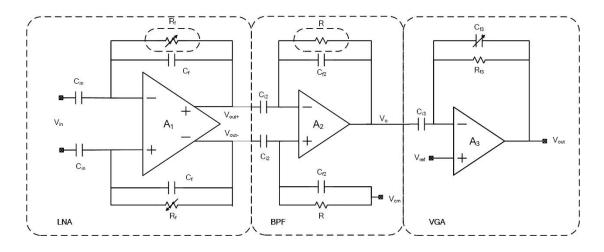
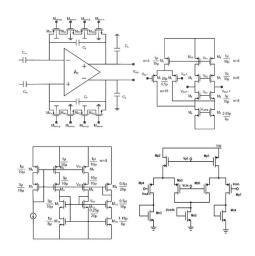


Fig1.整體架構圖

此架構包含一個低雜訊放大器(LNA),一個帶通濾波器(Band-pass Filter)和一個可調式增益的放大器(Variable gain amplifier)。

在擷取生醫訊號的生醫放大器的應用中,具有擷取多種訊號的能力是相當重要的,而各種訊號所在的頻帶均不同,訊號大小也不同,部分生物訊號(如 Local field potential) 位於極低頻處,因此在設計此類放大器的帶通頻帶時,架構中必要極低的高通轉角頻率,放大器之高通轉角頻率如


下所示:

$$f_L = \frac{1}{2\pi R_{FB}C_{FB}}$$

其中 C_{FB} 為回授路徑上之電容,而 R_{FB} 則為與之並聯之電阻。在電容回授架構中的增益由輸入端電容 C_{IN} 與回授電容 C_{FB} 的比值決定。然而在先進製程中為達到足夠大的增益且電容面積在合理範圍內, C_{FB} 的大小不適於選擇過大的值,一般多選擇在幾百 fF 附近。因此要在此前提下,達到約1Hz 的轉角頻率,所需之電阻阻值約在幾十到幾百Giga 等級,如此大阻值的電阻非常占面積。因此綜合前面幾項因素,多採用偽電阻架構 (Pseudo-resistor)。

由於傳統 MOS-bipolar 偽電阻架構受製程變異量極大,因此可調式偽電阻是必須的。上圖為可調式偽電阻,透過將 PMOS 操作在次臨界區,並利用 Vp和 Vn和訊號調整阻值。又因為需要將面積降低,電容不宜過大,因此在前兩級的部分均是疊接四顆偽電阻的架構,達到非常大的回授路徑 RC,藉此降低高通轉角頻率。

此部分需要知道 Pseudo-Resistor 對於製成變異較為敏感,因此在設計不同 Mode 時,需要根據不同 cornor 調整 Vp 和 Vn 的大小,此後等晶片下陷完畢,在做實際測量時,Vp 和 Vn 也需要根據晶片當下情形進行調整。

Fig2. 第一級 LNA amplifier 架構圖

第一級 LNA 使用 Folded-cascode 架構,是因為想在較低的 supply voltage 下有相對高的增益,雖然此架構相對於 telescopic 架構 noise 及 power 可能稍微高一些,但避免了 telescopic 架構輸入端點與輸出端點 電壓設計上複雜的問題。另外,由於 P-type MOS 在若反轉區有較低的 閃爍雜訊,因此選擇輸入電晶體為 PMOS,此外在設計時須考慮到 CMRR 的問題,在 Input pair 部分需要使用較大 size 的電晶體。

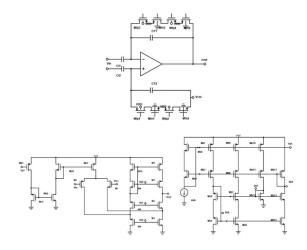


Fig3. 第二級 BPF amplifier 架構圖

Fig3.分別為第二級的架構圖和所使用的放大器、bias circuit 的架構圖,在這一級因為 CMRR 會被第一級的 gain 所除過,所以這一級的 CMRR 影響比較小。在這一級為了省下面積和功耗,所以使用了 single-ended folded-cascode amplifier,和前面一級一樣使用了 Capacitively-coupled instrumentation amplifier 的架構,增益是由輸入路徑的電容和回 授路徑上的電容的比值所決定,在這一級將增益控制在3dB,頻帶為6kHz。

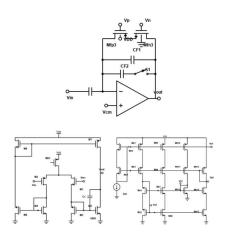


Fig4. 第三級 VGA amplifier 架構圖

Fig4分別為第三級的架構圖和所使用的放大器、bias circuit 的架構圖,在這一級因為考慮到 output swing,所以我們不再使用 folded-cascode 的架構,而是使用 two-stage 的架構,因為 two-stage 可能會有phase margin 上不夠的問題,所以使用米勒補償來使這個放大器stable。在這一級使用的 bias circuit 和第二級使用的為同一組,整體的架構依舊為 CCIA 架構,所以增益依舊是受輸入電容和回授路徑上電容的比值所訂。然而這一級主要是控制兩種不同的增益,透過 switch 去控制回授路徑上電容的大小來改變增益的值,我們設計了兩種增益的模式:0dB 和 5dB,頻帶則是設計在 4kHz。

五、 實驗結果

根據 post-simulation 結果顯示,神經訊號放大器之增益為42.7dB 以及 47.7dB,可調整頻帶下,高通轉角頻率範圍為 $20Hz\sim300Hz$,低通轉角頻率為4kHz,輸入等效雜訊為 $7.17~\mu Vrms$.,整體總功耗為 $1.6001\mu W$ 。

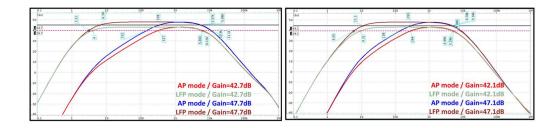


Fig5. Pre-sim(左)和 Post-sim(右) AC Response 圖

TT 37°C	spec	Pre-sim	Post-sim
Total current(uA)	-	1.60	1.65
Gain(dB) Clk=0/Clk=1	>40	47.7 / 42.9	47.1 / 42.1
Bandwidth(Hz) AP/LFP	20-4k / 400-4k	6.5-5.51k / 335-5.94k	10.8-4.56k / 300-5.09k
Power(uW)	<6	1.60	1.65
Noise (uVrms)	<15	7.17	8.05
Supply voltage (V)	1	1	1
PSRR(dB) AP/LFP	>60	70 / 67	68 / 67
CMRR(dB) AP/LFP	>60	78/70	66.9/65.1

Table 1. Performance and comparison result

六、 結語

在大學畢業專題中,我們從閱讀論文開始,找尋專題題目,設定 SPEC,到 Simulation、到 Layout,最終下線完畢,走了一遍完整的過程。這是我們第一次執行較大的 block,雖說還是有很多不足的地方,但此次過程,我們閱讀論文、實際模擬,學習到不同架構的 op 特性、不同 CMFB 優缺點,以及 PSRR、CMRR、Noise 的計算、實測,gm/id 設計方法、單端、雙端的不同等等,這些都是在課堂中沒有機會完成的完整內容,此間體會到類比領域的有趣及奧秘,不僅僅是對類比領域產生更多的嚮往,更體會到做研究需要不停地查閱知識、翻找閱讀論文,大量搜尋國內外網站、各式不同的平台,或是自己嘗試,總能夠捞出一些很有用的資料,而收到資訊之後,需要內化、整理,也需要辨別知識真偽,最終才能運用在我們的實務上。

此外團隊合作腦力激盪討論,對我們來說也很重要,這也體現到無論未來進 入職場或是繼續研究之際,除了自行努力找尋答案,若是可以有良好的溝通能力, 能友善進行交流溝通討論,將會為結果帶來更大效益。

感謝的除了父母家人之外,還有感謝教授的指導,以及感謝指導我們的專題學姊,謝謝學姊總是為我們解答疑惑,對我們的進度非常用心,也很感謝台灣有這個教育環境,感謝 TSRI 將資料分享予學生,供予我們學習研究,期許自己未來無論是從事研究、產業、教學等領域,都能夠回饋家人、回饋社會,以示感謝之意。