
2. Hardware setup
• Hardware Architecture

• Controller Design

The reason why we use Arduino to control the robot is that we can’t control

the robot by computer directly. If we want to make our robot move, we need an

embedded system to send the movement signal to the remote controller. And the

embedded system we used is Arduino. The Fig. 3 shows how the controller works.

ROS navigation stack, in Fig. 8, provides a structure that takes the static

map and odometry from RTAB-MAP, sensor data, TF and the goal in the form of

coordinate and orientation as input while the output is a combination of

linear/angular velocity which will then proceed to our controller. The core of

navigation is the “Move_base” that is composed of four components: Global/Local

planner, Costmap and recovery behavior. Due to the use of the Ackerman model,

the default base_local_planner and Navfn are substituted with teb_local_planner

and global_planner that support car-like models and provide orientation targets.

The recovery behaviors are designed for car-like robots specifically since our

robot cannot perform rotated actions.

• Costmap: The map that the robot will see. It holds the information of the

obstacles in the form of grids on the map.

• Global_planner(Global_planner): Global planner will read the coordinate from

the ‘/goal’ topic and compute the global path based on global costmap.

• Local_planner(TEB_local_planner): The local planner receives the global path

from the global planner. It tends to follow the global path but compute the

detailed movements depending on the capacity of different robots.

• Recovery_behavior(stepback_and_steerturn_recovery): When the trajectory

from the local planner is not feasible in real-time, the move base will turn to

recovery behavior to escape from the current state to compute another trajectory.

3. RTAB-MAP

4. ROS Navigation

The hardware setup is as Fig. 1 showed. The

architecture is based on a 4-wheel RC car which

provides us with sufficient power for carrying

purposes. The RC car uses Ackerman steering method

which differs our model from other differential robots.

The model is equipped with RPLidar A2 and a

Realsense D435i. Lidar allows the robot to detect the

obstacle all around and also perform refinement for

visual SLAM. The D435i works as the “eye” of the

robot which enables it to see the obstacle at front and

provide the image data for RTAB-MAP to build the

map and compute the odometry. Our software system

communicates with the RC model through an Arduino

controller design.

Fig. 1

Fig. 2

Fig. 4

Fig. 8

Navigation stack

V-SLAM can be illustrated in five blocks in Fig. 10: Initialization, Visual odometry,

loop closure, optimization and Mapping.

- Initialization of the global coordinate system enables the system to correctly

identify the sensor location within the coordinate system.

- Visual odometry provides the information of the camera’s motions and poses.

- Loop closure can judge whether the robot passes through the same place by

image matching.

- Optimized pose estimation will be utilized to locate the camera within the

system coordinate if loop closures happen.

- Mapping projects the point cloud created from the images’ feature points to the

grid map.

RTAB-MAP in Fig[9] consists of several independent parts: the sensors, TF,

odometry and rtabmap’s core which performs the loop closing, graph optimization

and map building with the memory utilization of WM and LTM. Stereo odometry

was used as our odometry source since it won’t be affected by sunlight as severe as

RGB mode. Parameters for RTAB-MAP were tuned to work best with our testing

conditions. In our system RTAB-MAP plays an important role in producing

odometry and static maps for navigation.

5. Result & Analysis

A . Gazebo Simulation

A world includes maze and outdoor environments are created for trials. Large

errors occur in simulation due to the lack of visual features. However, short distance

tests still showed a precise result.

B . Real-world Environment

The tests in the real-world were taken in the periphery(open space) and the

square(semi-open space) of the Delta building. In comparison with simulation, real-

world application showed a precise odometry result with only 30cm of errors. In

semi-open space, the odometry will slightly jump due to similar visual features. The

navigation trials showed a promising result for the goal set at the front. However,

more computations are needed for backward goal and sometimes will be stuck in the

local minimum.

Discussion

Several aspects need to be considered:

1. ROI of auto-exposure is set to avoid the effect of sunlight.

2. Same path might need to be recorded repeatedly in order to either fix the drift in

odometry and clear the false obstacles on the map.

3. The speed while mapping the environment can’t be too fast in case that the

computing doesn’t catch up the speed.

4. The height of the sidewalk is sometimes too low to be detected by camera and

lidar.

5. Since the controller frequency is retained to 2Hz, the robot will not avoid fast

moving obstacles like bicyclers in time.

6. Lanes and road signs aren’t taken into consideration. For on road

implementation, integration of computer vision is needed.

7. The mapping session consumes large memory, time, computation resources and

power.

Fig. 5

Gazebo simulation and result 

Fig. 6

mapping result of peripheral 

and square of Delta

Fig. 7
Navigation results with 

obstacle avoidance. 

Blue circles stand for 

the obstacle. The red 

path is the local plan. 

The last picture 

demonstrates the 

obstacle avoidance with 

the car being blocked.

6. Conclusion
In this project, we rolled out an implementation of system integration for an autonomous vehicle. The system provides an architecture which is composed of visual SLAM,

RTAB-MAP, and ROS navigation stack with modification plugins. The proposed model is based on a 4-wheel drive RC model with a stereo camera and a lidar as the sensors. The

setup along with some modifications with respect to the result of trials can realize the purpose of outdoor autonomous navigation under a controlled complex environment. After the

tests, defects, like detection failure of lower obstacles or odometry drifting, were found. In future work, the reinforcement of odometry and the direct use of a human-based map on

navigation can be carried out. As a result, our proposed robot with a promising autonomous driving capability looks forward to becoming a foundation for further research or

application with self-driving cars on campus.

指導教授：邱偉育

Realization of Outdoor autonomous navigation based on RTAB-MAP
組別：A90 組員：許晏誠、張瀚、何立平

Fig. 3

1. Abstract

Self-driving has been a prevailing topic of research for years. Preceding research

has shown promising result within indoor environment while outdoor

application has faced some hindrances, such as complexity and noises of the

outdoor condition. Thus, in this paper, we’ll present a simple framework of

autonomous driving in an unknown outdoor space for further research on real-

world on-road implementation.

Fig. 9 Fig. 10


