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Abstract 

Recently, Virtual Reality (VR) becomes increasingly more popular. It enables a wide 

array of novel applications in many domains, such as video streaming, computer games, 

occupational training, healthcare, manufacturing, etc. We opt Depth Image-Based Render 

(DIBR) as the method to synthesize remoted scenes. 

We address the problem of quantifying the perceived quality in 6DoF (Degree-of-

Freedom) live immersive video in two steps. First, we develop a set of tools to generate 

(or collect) datasets in a photorealistic simulator, AirSim. Using these tools, we get to 

change diverse settings of live immersive videos, such as scenes, trajectories, camera 

placements, and encoding parameters. Second, we develop objective and subject 

evaluation procedures, and carry out evaluations on a sample immersive video codec, 

MPEG MIV, using our own dataset. Several insights were found in our experiments, e.g., 

Quantization Parameter (QP) is a good control knob to exercise target view quality and 

bitrate, but camera placements (or trajectories) also impose significant impacts. These 

findings shed some light on the key research problems for the development of merging 

applications relying on immersive interactions. According to the results of this paper, we 

can utilize it to solve the camera placement problem or more deeply discuss the user 

experience of immersive video in the future. 

 

Introduction 

Virtual Reality (VR) refers to 3D simulations of virtual scenes consisting of objects 

and persons that offer immersive interactions.  The VR market is expected to reach 15.5 

billion euros by 2022 [1]. As a killer application of VR technologies, virtual worlds, a.k.a. 

metaverse, are online environments that allow multiple users at diverse geographical 

locations to interact with one another instantaneously in virtual scenes. The metaverse 

market is projected to grow at a staggering 43.3% annual growth rate until 2028 [2]. 

Dionisio et al.[3] pointed out that the success of metaverse rely on the following four 

features: realism, ubiquity, interoperability, and scalability. One of the key enablers for 

these four features is live immersive video streaming, which allows multiple users to 

depart from their physical locations and meet one another at a remote scene, which can 

be an artificial or natural one [4]. 



We consider live immersive video streaming of a dynamic remote scene to multiple 

Head Mounted Display (HMD) users, who will interact with the scene in 6 Degree-of-

Freedom (6DoF). 6DoF includes: (i) yaw, roll, and pitch, which specify the user 

orientation and (ii) surge, heave, and sway, which specify the user position. One way to 

enable 6DoF interactions is through capturing or generating 3D scenes, using volumetric 

media, like point clouds or meshes [5]. Doing so, however, is computational expensive 

and thus is less suitable for streaming dynamic and live scenes. Therefore, we opt for low-

complexity Depth Image-Based Rendering (DIBR) to bring remote scenes, objects, and 

persons to HMD users over the Internet. DIBR synthesizes new videos from multiple 

RGBD videos at different positions and orientations. 

Fig. 1 illustrates a sample live immersive video streaming session from a remote 

dynamic scene to multiple HMD users; more general bi-directional streaming scenarios 

are also possible. We envision that multiple HMD users (on the right of the figure) freely 

explore the dynamic remote scene, which may contain moving objects, such as a running 

dog, and environment changes, such as dimming ambient light due to sunset. Each HMD 

user sees a unique target view, which depends on his/her positions and orientations over 

time, as described by a target view trajectory. The target views are synthesized by the 

source views captured at the dynamic remote scene (on the left of the figure). For example, 

multiple cameras can be carried by drones to capture RGBD videos with camera 

parameters following source view trajectories. The captured source views are encoded at 

the streaming server and streamed to synthesis clients with diverse computational devices 

and communication networks. HMD users (top in the figure) who are tethered with 

powerful workstation and broadband access networks can receive all source views for 

better synthesized target view quality. However, users constrained by all-in-one HMDs 

(with entry-level GPUs and limited battery capacity) or cellular networks (with limited 

bandwidth) may receive fewer or reduced-quality source views to ensure realtimeness. It 

Fig. 1: Sample 6DoF live immersive video scenario. 



is not hard to see that the source view (drones) trajectories should be carefully computed 

based on the target view (HMD users) trajectories. Nonetheless, such computation needs 

to consider various constraints, including aerodynamics of drones, computation power of 

the streaming server, and bandwidth of the Internet, and thus is an open and challenging 

problem. 

In our research, we study a fundamental research problem for solving the 

aforementioned optimization problem: how to quantify the perceived quality of 

synthesized target views? This is not an easy task because human perception system is 

highly nonlinear and hard to predict. Particularly, we tackle the problem in two steps:  

⚫ Data collection. We develop a suite of tools to collect source views from a 

photorealistic simulator based on AirSim [6], which is built upon Unreal Engine [7]. 

Using the tools, we get to exercise diverse settings, including scenes, trajectories, 

camera placement, and encoding parameters, when collecting a rich set of source 

views for experiments. More importantly, we can also gather the target views from 

the simulator, which serve as the ground truth for quality assessment. With the 

developed tools, virtually unlimited amount of dynamic remote scenes can be 

generated by us and the research community. 

⚫ Quality assessment. We carry out both objective and subjective quality assessment 

to understand how different settings affect the perceived quality of the synthesized 

target views. Our assessment results reveal the key settings that affect the perceived 

quality the most. Moreover, the developed quality assessment procedure can be 

adopted by the research community. 

To the best of our knowledge, the above tasks have not been thoroughly investigated in 

the literature.  We notice that, although our proposed solution can work with any DIBR 

synthesizers, for concrete discussion, we employ the recent MPEG Immersive Video 

(MIV) standard [8] for encoding and decoding RGBD video streams and camera 

parameters, as well as synthesizing and rendering target views in this paper. 

 

Related Work 

Objective quality assessment of live immersive video streaming has been 

conducted to understand how different settings affect the target view quality. For example, 

Cai et al. [9] compared the performance resulted by using different 2D video codecs to 

encode depth video in 6DoF streaming. They found that AVS3 codec achieves better 

coding efficiency at an expense of higher computational complexity. Sebastian et al. [10] 

conducted a similar study on depth video compression.  In contrast, Szekielda et al. [11] 

studied the implications of 2D encoding parameters on both RGB and depth videos. 

Software components other than 2D video codecs have also been exercised. For example, 

Fachada et al. [12] focused on the impact of different synthesizers under linear versus 

planar camera placement.  Pre- or post-processing of the RGB and depth videos for higher 



coding efficiency was also investigated. For example, Jeong et al. [13] proposed to 

downsample the RGB video and upsample the depth video to increase the coding 

efficiency.  Salahieh et al. [14] compared the performance of MIV reference software, 

called Test Model of Immersive Video (TMIV) [15] in the 3D domain. In particular, they 

considered different settings, including single-versus multi-pass synthesis and MIV versus 

MIV View modes}. Their performance compassion revealed that multi-pass synthesis 

leads to significant performance boost in MIV View mode. Last, the impacts of different 

camera (source view) densities on synthesized target view quality were evaluated in Ray 

et al. [16]. They concluded that higher camera densities lead to better perceived quality. 

Compared to our work, the aforementioned studies have two major limitation. First, 

almost all of them (except Ray et al. [16]) employed existing scene/trajectory datasets. 

The only exception is Ray et al. [16], in which two scenes created in Blender were used. 

Second, none of them considered continuous 6DoF trajectories of source and target views. 

The closest setup to continuous 6DoF trajectories was the discrete camera 

locations/orientations adopted in Fachada et al. [12] and Ray et al. [16]. Our AirSim-

based data collection tools offer the opportunity to generate large and flexible datasets 

with real 6DoF source/target trajectories. 

Subjective quality assessment of live immersive video streaming were mostly done 

on volumetric media [17] [18]. For instance, Wu et al. [17] adopted Double Stimulus 

Impairment Scale (DSIS) method to study the impact of point cloud compression. Nehme 

et al. [18] investigated the subjective quality of rendered 3D mesh models. The subjective 

quality of DIBR-based approach has also been recently studied. For example, Schwarz et 

al. [10] employed the Double Stimulus Impairment Scale (DSIS) [19] method to study 

the implication of Quantization Parameter (QP) of depth video on the subjective quality 

with two scenes. Jung and Boissonade [20] also used the DSIS method to study the 

subjective quality with MPEG-defined target view trajectories with different synthesizers 

in four scenes. Different these two studies that only varied one parameter of the 2D codecs, 

our subjective quality assessment exercised many more settings, including camera 

placements (source view trajectories). 

 

Data Collection System 

A. Implementations 

The purpose of collecting our own dataset is to investigate the impacts of diverse 

settings on the synthesized target views. This dataset has to cover a wide variety of usage 

scenarios with: (i) different camera placement strategies, (ii) random target view 

trajectories mimicking real HMD users, (iii) scenes with diverse characteristics (e.g., 

lighting conditions, color tone, and dynamics), we capture the source views by extending 

AirSim [6], which is an open-source project that provides Application Programming 

Interface (API) for programmers. For example, we develop tools using camera control 



API to capture source views. 

Target view trajectory generator. We have surveyed some random trajectory 

generators including (i) random waypoint, which selects the next target position randomly 

and go at a random velocity then pause for a short period, (ii) random walk, which 

randomly choose an adjacent point to go, and (iii) random direction, which go in a random 

direction with a random velocity for a period of time. Eventually, we decide to employ 

the random waypoint model because it is the most suitable one for simulating a random 

mobility of a user. However, the maximum velocity and the dynamic range are left 

specified.  

To make the random data behave like normal human, we also implemented a user-

trajectory collection system with Unreal Engine HMD library. Several users were 

recruited to tilt (roll), nod (pitch), and rotate (yaw) their heads. The head movement will 

be recorded and become one of the instances our user study dataset. Head trajectories will 

be further processed to extract the data distribution among different dimensions to 

generate reasonable random waypoint model. We found that the dynamic range for roll, 

pitch, and yaw are 80, 80, and 100 degrees respectively, and the angular velocity falls in 

the interval of 8 to 80. The translational components are generated with the bounding box 

(0.35m x 1m x 1m) which we define the bounding box area by referring to the dataset 

with similar camera placement in MPEG common test condition. [21]. For rotational 

components, we use the statistics as described in the following section. In our 

implementation, the two components are generated at random, and each component will 

try to travel to its destination independently with random but reasonable speed then 

immediately select the next waypoint. 

( a ) ( b ) ( c ) 

( d ) ( e ) 

Fig. 2: The considered scenes sorted in increasing complexity levels: (a) Light, (b) Arch, 

(c) Xoio, (d) Office, and (e) Real. 



Table 1: Scenes in Our Dataset 

Scene #Obj #Mesh Space Lighting Color Tone TI SI 

Light 52 51.3K Narrow Bright Warm 19.1 35.0 

Arch 282 5.5K Wide Bright Warm 27.1 57.4 

Xoio 125 2.8K Wide Bright Cold 26.2 57.8 

Office 96 100.4K Narrow Dark Cold 29.6 62.2 

Real 352 221.1K Narrow Dark Warm 34.7 66.7 

 

Moreover, we adopt the random waypoint as the mobility model to generate random 

target view trajectories. In addition to random trajectories, we also implement tools to 

collect real HMD user trajectories using Unreal Engine. In a pilot test, we recruit three 

HMD users, play a random scene to them, and analyze their target view trajectories. We 

found that the dynamic ranges of roll/pitch/yaw are 80/80/100 degrees, and the angular 

velocity is between 8 and 80 degree/s. We also found the HMD users moves at a speed 

between 0.1 and 1 m/s. We use these statistics to generate random target view trajectories.  

B. The Dataset 

We select five scenes from Unreal Engine marketplace [22], and modify one of them 

into a dynamic scene. Fig. 2 gives sample video frame of these scenes (except the dynamic 

one). Table 1 summarizes the scenes with key characteristics. The synthesized target 

views from these scenes exhibit different complexities in terms of Temporal Information 

(TI) and Spatial Information (SI). The dynamic scene, RealD, is generated by adding a 

howling wolf and a rolling ball to Real. For each scene, we manually choose direction 

that have the richest set of visual features. We then place 36 cameras with one of the four 

placements: 6  × 6, 9  × 4, 12  × 3, and 18  × 2, which we shown in Fig. 3. Following 

MPEG's recommendations, all cameras and trajectories are confined in a 0.35  × 1  ×

1 m3 bounding box. We set the resolution and Field-of-View (FoV) of each camera to be 

1280  × 720 and 90°, respectively. We generate 10 target view trajectories: 𝑡1  to 𝑡10 

using the random waypoint model. We also selected a real HMD user's trajectory from 

our pilot test that covers the largest surface of the scene. We refer to it as 𝑢1 . Each 

trajectory contains 90 samples of positions and orientations at 30 Hz. 

One last complication is the different coordinate systems used by: (i) Unreal Engine 

(North-Eastern-up, left-handed), (ii) AirSim (North-Eastern-down, right-handed), and (iii) 

TMIV (North-Western-up, right-handed). We have implemented scripts to convert the 

coordinate systems. For each combination of the scene and camera placement 

(trajectories), we capture RGBD videos from individual cameras, which are source views. 

We also captured the RGBD video clips following individual target view trajectories, 

which are target views, or ground truth. Both source and target views are stored as raw 

videos. In summary, our dataset contains: (i) source view placements (trajectories), (ii) 

target view (trajectories), (iii) source views, and (iv) target views. We plan to make our 

tools and sample dataset public. 



 

MPEG Immersive Video Standard 

In this section, we briefly introduce the workflow and components of MIV codec 

[15] [8]. 

Fig. 4 (a) shows the high-level workflow of MIV encoder. The inputs of MIV 

encoder are source views. Each source view is composed of attribute (texture) videos, 

geometric (depth) videos, and camera parameters. MIV encoder do the following process 

to compress source views: 

⚫ Automatic parameter selection. MIV encoder automatically calculate the 

parameters for compression, e.g., assessing geometric video quality, splitting source 

views into multiple group according to configuration, and labeling source views in 

each group. 

⚫ Single-group encoders. MIV encoder encodes each group of source views 

separately. In each group, the encoder chooses several views as the basic view 

according to the label of source view, and remove the duplicate area in other source 

views. The basic view and remaining area of other views are packed into rectangle 

video frames, which are called atlases. Fig. 5 show the example of atlases.  

The outputs of MIV encoder are attribute atlases, geometric atlases, and metadata 

( a ) ( b ) 

( c ) ( d ) 

Fig. 3: The camera placement: (a) 6x6, (b) 9x4, (c)12x3, and (d) 18x2. 



bitstream. The atlases are further compressed by video codec, and multiplexed with 

metadata bitstream as a single bitstream. 

Fig. 4 (b) shows the high-level workflow of MIV decoder. The inputs pf MIV 

decoder is the bitstream contains atlases bitstream, and metadata bitstream. The video 

decoder first be employed to decompress attribute atlases and geometric atlases. After 

that MIV decoder do the following process to decompress atlases and synthesize the user's 

viewport. 

⚫ Reconstruction process. The MIV decoder reconstruct the source view by 

using the data in atlases. 

⚫ Synthesizer. The MIV decoder employ view synthesis techniques to synthesize 

the user's viewport according to user's position and orientation. Specifically, the 

synthesizer warp the pixel of each source view to user's viewport according to 

depth information, and blending the pixel values from each source views. 

⚫ Inpainting.  After synthesis, the synthesized result may contain holes without 

information. The inpainting process uses the information from neighbor pixels 

to calculate pixel value for holes. 

( a ) 

( b ) 

Fig. 4: The high-level overview of process flow of TMIV: (a) Encoder and (b) Decoder. 



The outputs of MIV decoder are user's viewport synthesized according to user's position 

and orientation. 

 

Objective Quality Assessment 

A. Setup 

We carry out experiments using our collected dataset to quantify the objective 

quality of the synthesized target views. TMIV [23] version 10 is employed, which takes 

a few groups of source views and exploits the redundancy among source views in each 

group. We put all source views in a group. TMIV encoder selects a most representative 

view (called basis view), removes duplicated areas from other source views (called 

additional views), and packs them into rectangle video frames (called atlases). 

These RGBD video frames are encoded by a traditional 2D codec. We employ x265 codec 

[24] version 4.2.4 in our experiments and combine the x265 bitstreams and TMIV 

metadata into the final TMIV bitstream for immersive video streaming. TMIV decoder 

decodes RGBD video frames using x265 and synthesizes target views. We vary the 

following parameters of TMIV and x265 in our experiments: 

⚫ QP trades off the bitrate and RGBD video quality. MPEG group suggests using a 

smaller QP for depth video (80% of the corresponding RGB videos) because depth 

imposes significant impacts on synthesized quality [25]. We set (RGB video) QP ∈

{ 20, 36, 44, 48, 50 }, targeting 5 to 50 Mbps total bitrates. 

⚫ Synthesizer of TMIV can be either Reference View Synthesizer (RVS) or View 

Weighting Synthesizer (VWS). 

⚫ Camera placement∈ { 6 × 6, 9 × 4, 12 × 3, 18 × 2 } for the five scenes in Table 1. 

Fig. 5: The example of atlases. The left picture is attribute atlas, and 

the right picture is geometric atlas. 



For the dynamic RealD, we vary the camera placements (source view trajectories) 

every 30-frames in the following order: 6X6, 9X4, and 12X3. 

⚫ Target view trajectory ∈ {t1,  𝑡2,   … ,  𝑡9,  𝑡10,  𝑢1}. 

We run our experiments on a workstation with Xeon E5-2678 CPUs at 2.5 GHz. 

We configure the x265 encoder to use default coding parameters with a Group-of-Picture 

(GoP) of 30, corresponding to the frame rate. We measure the following objective metrics, 

and report the average results with 95% confidence interval whenever applicable: 

⚫ Video quality of the target views in Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), and Video Multi-Method Assessment Fusion (VMAF) [26], 

which are full reference quality metrics. 

⚫ Bitrate of the TMIV bitstream. 

⚫ Running times of the per-frame TMIV encoder, x265 encoder, TMIV decoder, and 

x265 decoder. 

B. Results 

Comparisons between synthesizers. We compare two synthesizers using t1 − −t10 

in different scenes. We report sample results from the QP of 20 and the camera placement 

of 6X6 in Fig. 6. Other combinations lead to similar results. This figure reveals that all 

three video quality metrics show similar trends, although the difference in VMAF is more 

clear. Hence, in the rest of the paper, we report sample video quality results in VMAF. 

Furthermore, RVS leads to higher video quality in most scenes, except the low-

complexity Light (with the lowest TI and SI as indicated in Table 1). In contrast, VWS 

works better in more complex scenes and under higher motion. Furthermore, we observe 

no statistical significance in VMAF (and PSNR/SSIM) of the overall video quality: p-

values are all above 0.18. Last, Fig. 6(d) shows that VWS results in longer TMIV 

decoding time than RVS. Because RVS achieves comparable video quality with about 

half of the TMIV decoding time than VWS, we give the sample results from RVS in the 

rest of the paper. 

( d ) ( d ) ( d ) ( d ) 

Fig. 6: The video quality achieved by different synthesizers in: (a) PSNR, (b) SSIM, (c) 

VMAF; and required: (d) TMIV decoding time. 



Implications of QP values. Next, we vary QPs under different camera placements 

and present the results from individual scenes in Fig. 7. Fig. 7(a) shows that the video 

quality decreases when QP is increased. Besides, Fig. 7(b) reveals that the bitrate 

decreases even faster when the QP is increased. For instance, when increasing QP from 

20 to 50, the bitrate is divided by fourteen. We also plot the Rate-Distortion (RD) curves 

in Fig 7(c). We observed that 6X6 and 9X4 camera placements give better video quality 

compared to 12X3 and 18X2 ones. We take a step further and compute the BD-rates [27] , 

which are omitted due to space limitation. Take Arch as an example, the BD-rates of 12X3 

( a ) ( b ) ( c ) ( d ) 

Fig. 7: The objective results from different QPs and camera placements: (a) video quality, 

(b) bitrate, (c) RD-curves, and (d) TMIV decoding time. 

( b ) ( b ) 

Fig. 8: Sample video quality distribution of individual grids: (a) absolute VMAF from 

6X6 and (b) delta VMAF of 18X2, compared to that of 6X6. Dots represent cameras in 

the bounding box. 

( a ) ( b ) 
( c ) 

Fig. 9: Per-frame: (a) video quality and (b) bitrate; and (c) sample synthesized target view 

frames from dynamic scene RealD. 



and 18X2 camera placements are 7.92% and 2.47% compared to the 6X6 one. This shows 

that camera placements (source view trajectories) affect the coding efficiency of live 

immersive video streaming.  

To better understand how target view trajectories affect the synthesized view quality, 

we take a deeper look at QP=20 with Arch under camera placements 6X6 and 18X2. We 

first divide the wall with the most visual features into 30 × 30 grids. We then project t1 −

−t10 to these grids and compute the average video quality of each grid. We use the results 

from 6X6 as the baseline and plot its absolute per-grid VMAF as a heatmap in Fig. 8(a). 

We also report the delta VMAF of 18X2 compared to 6X6 in Fig. 8(b). These two figures 

depict that wider camera placement results in better video quality at the center of the wall. 

This can be attributed to the unequal coverage areas (by at least a camera) and density 

(number of covered cameras) across different camera placements (source view 

trajectories). In particular, 18X2 camera placement focuses more on the vertical center as 

indicated in Fig. 8(b). Last, we observe that the x265 encoding and decoding times 

decrease when QP is increased. This can be attributed to the reduced amount of data 

passing the quantizer of x265. However, different QPs do not affect the TMIV decoding 

time too much as reported in Fig. 7(d). This is because the TMIV decoder takes source 

views in YUV as inputs. 

Dynamic scene. We report results from QP=20 with RealD, in which camera 

placements are dynamic. Particularly, the camera placements are: 6X6 (first 30 frames), 

9X4 (next 30), and 12X3 (last 30). We report the video quality and bitrate over time in 

Fig. 9(a) and Fig. 9(b), respectively; and give sample synthesized target views in Fig. 9(c). 

We observe that the video quality changes when cameras (drones) move. Similarly, the 

bitrate also varies over time. This experiment demonstrates the importance of camera 

placements, especially in dynamic scenes. We envision that an algorithm to compute the 

source view trajectories given the scene, target view trajectories, network bandwidth, etc., 

is critical to optimize 6DoF immersive video streaming. 

 

Subjective Quality Assessment 

A. Design 

In our subjective quality experiment, we consider 2 synthesizers, 5 camera 

placements, and 5 QPs. We randomly select a target view trajectory t9 and loop the 90-

sample trajectory to get 10-sec target videos of a sample scene Real. We then play 50 

videos with different settings in a random order to subjects using a 27-inch 2K monitor. 

We adopt the DSIS [19] method and play the reference and synthesized videos side-by-

side. We recruited 17 subjects between 19 and 33 years old; 6 of them are males. Each 

subject first answers the demographic questions. We then explain the procedure, followed 

by a training session of 10 videos from a totally different scene (not in Table 1). We adopt 

the ACR (Absolute Category Rating) scale, where 5 indicates excellent and 1 indicates 



bad. For each synthesized target view video, a subject says his/her scores aloud, which 

are recorded by an assistant. We consider the following four questions: 

⚫ Overall: How was the overall quality? 

⚫ Similarity: How similar was the target video to reference one? 

⚫ Sharpness: How was the image sharpness? 

⚫ Color: How was the color naturalness? 

Subjects are also given a chance to provide text-based feedback. It takes each subject at 

most 50 mins to complete all the videos. They can take a 10-min break in the middle. We 

report the Mean Opinion Scores (MOS), with 95% confidence intervals if applicable. 

Table 2: Correlation Between Subjective Metrics: PLCC/SROCC 

Correlation Overall PLCC Overall PLCC 

Overall 1.00 1.00 

Similarity 0.94 0.96 

Sharpness 0.95 0.95 

Color 0.92 0.95 

 

B. Results 

Implications of synthesizers and QPs. We first plot the MOS of different subjective 

metrics produced by different synthesizers in Fig. 10(a). This figure reveals that the 

subjective difference between the two synthesizers is rather small, which is consistent 

with our objective assessment results. We also plot the MOS under different QPs in Fig. 

( a ) ( b ) ( c ) 

Fig. 10: Subjective quality assessment results, the implications of: (a) synthesizer, (b) 

QPs, and (c) camera placements. 

( a ) ( b ) 

Fig. 11: Sample target views: (top) 6X6 and (bottom) A6X6. 



10(b), which shows that QPs affect the sharpness the most, as indicated by the steepest 

slope. This can be attributed to the blocking artifacts due to quantization with large QPs. 

In contrast, QPs affect the similarity the least. This could be explained by the difficulty 

of judging the similarity (of side-by-side) target views. Last, the color and overall quality 

fall somewhere in between. 

Correlation between subjective quality metrics. Next, we give the correlation 

between subjective metrics in PLCC (Pearson Linear Correlation Coefficient) and 

SROCC (Spearman Rank Order Correlation Coefficient) in Table 2. PLCC captures the 

linear relationship between two random variables, and SROCC captures the rank 

relationship [28]. We observe that the overall quality has positive correlation to all three 

other subjective metrics; however, none of these three subjective metrics dominates the 

overall quality. 

Implications of camera placements. In our pilot user study, multiple subjects 

mention that the door of the scene is missing, as shown in Fig. 11. We take a closer look 

and find that the door is not covered by any camera in the (planar) placements. Hence, 

we augment camera placement 6X6 into A6X6, in which the cameras are horizontally 

rotated into an arc placement. Fig. 10(c) gives the MOS resulted from diverse camera 

placements. We make three observations. First, different (planar) camera placements do 

not affect the subjective quality too much. We believe this is because subjects are attracted 

by the missing door, and are less sensitive to quality difference. Second, A6X6 leads to 

higher MOS on overall quality, similarity, and sharpness. This can be attributed to the 

existence of the door. Third, A6X6 results in lower MOS on color. This can be explained 

by lower camera density of A6X6. Several subjects mention diamond-shape artifacts, 

which negatively affect the color naturalness. Last, we note that the quality improvement 

of A6X6 comes at a price of higher bitrate: on average a BD-Rate of 8.75 Mbps is 

observed. The user study shows the importance of more flexible camera placements on 

user perceived subjective quality. 

 

Conclusions 

In this paper, we developed tools upon open-source AirSim to generate/capture 

diverse scenes and source/target view trajectories. Using this dataset, we evaluated TMIV 

and x265 through detailed objective and subjective evaluations. Several insights were 

found, for example: 

⚫ The two synthesizers in TMIV produce comparable target view quality, but RVS 

runs 2 times faster. 

⚫ QP is a good control knob to exercise target view quality and bitrate, but camera 

placements (or trajectories) also impose significant impact. 

⚫ Subjective overall quality has strong linear/rank correlation with subjective 

similarity, sharpness, and color. 



 

Future Works 

We plan to extend this work in multiple directions. For instance, we are developing 

a parameterized perceived quality model for 6DoF live immersive video streaming. 

Guided by the resulting models, a wide array of optimization problems can be formulated, 

solved, and implemented for enhancing immersive experience. For example, existing 

optimal camera placement algorithms considered 3D view coverage rather than 

synthesized target view quality [29]. 
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心得 

孫元駿： 

這兩個學期的專題研究，我覺得受益良多，也非常的扎實。在專題研究的過

程中參與也學習到很多學術研究的方法和技術。起初對於多媒體領域的一知半解，

在經過大量的閱讀論文，以及和老師以及學長姐的指導之下，開始對網路以及多

媒體中的基本知識以及專有名詞都有更多的了解，甚至可以發現論文的不足，或

是提出自己的見解。在這兩個學期，我覺得我受到老師以及學長姐的幫助很大，

不僅僅是針對研究本身，也包含了很多研究以外的細節，像是如何做好簡報、應

該在報告的時候呈現什麼、有效率的提出問題、如何設計實驗以及管理實驗流

程......。每週我們都會參與自己項目的會議，以及實驗室的團體會議，我覺得這

些對我來說都是很珍貴的體驗，也都可以從過程中學習到很多，也可以得到很多

反饋。 

這次的專題前半部主要是針對 Immersive video 合成進行研究，利用 DIBR 的

技術去合成影像，並且針對 TMIV 的參數做調整，並且測量和分析。其中也用到

了很多的工具，像是使用 Unreal Engine 和 AirSim API 去抓取 texture information 和 

depth information，或是 PSNR、SSIM、VMAF 等 quality metric 去做影像品質的測

量，也利用到 BD-Rate、BD-PSNR、PLCC、SROCC 等工具來幫助我們分析結果。

https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://gitlab.com/mpeg-i-visual/tmiv/-/tree/v10.0.1
https://www.ffmpeg.org/
https://github.com/Netflix/vmaf


在專題的後半段主要是針對前面的測量進行延伸，針對相機擺放的問題更深入的

去探討演算法，期望可以找到最佳化的相機擺放位置，以提供多人的高品質、低

頻寬、實時的影像串流。同時，也針對 5G 環境的 VR Cloud Gaming 進行研究，

希望可以利用 5G 的特性，去有效的利用在雲端遊戲串流之上，以降低終端設備

的運算要求，使 VR 遊戲更加普及。 

非常感謝指導教授、學長姐以及我的組員在這兩學期的幫助和指導，在讓我

學習之外，也讓我更明確自己未來的規劃和學習方向。 

 

王婧庭 

 在剛專題開始之前，我一度擔心自己的先輩知識不夠，專業能力不足，沒辦

法有好的成果，但是教授告訴我每個人一開始都是這樣，慢慢學就可以了。在這

兩學期的專題研究中，我從什麼都不會，一直問學長姊，到現在漸漸地有自己的

想法，能夠與其他人討論，而不是只是單方面吸收，真的很感謝教授和學長姐的

幫助，不僅僅只是研究方向上的，研究以外的各方面也是獲益良多，例如做實驗

的方法、讀論文以及報告的技巧，還有各種需要注意的小細節，我也同時體會到

在多媒體和網路領域方面還有很多值得研究的議題，以及自己在這兩個領域上有

多麼不足，如同教授所說的，做研究沒有正確答案，只有一直去找更佳解。當然

做研究遇到瓶頸，或是失敗也是常有的事，跑錯實驗，或是結果不如預期，都是

家常便飯。所有研究成果都是失敗的累積，沒有什麼是一蹴可幾的，也因此我們

才能有所成長。 

 


