
I. ABSTRACT

III. EXPERIMENTAL RESULTS

II. RESEARCH METHODOLOGY

Fig. 4 Data Accuracy Fig. 5 Inten. Power Consumption Fig. 6 Inten. Calculation Time

A 65nm Floating-Point Processor Supporting
Parallel Digital Sparsity & Intensive In-Memory Computing

with Adjustable Precision​ for Convolutional Neural Network

Group : A513 Member : Pei-En Liu, Yu-Da Lu, Guo-Zhang Liao Advisor : Prof. Meng-Fan (Marvin) Chang

 [1] J. Yue, C.-C. Li, Y.-H. Lai, W.-H. Liao, C.-H. Wang, T.-H. Yang, C.-C. Wu, Y.-M. Huang, and T.-W. Lu, “A 28 nm 16.9–300 TOPS/W computing-in-memory processor supporting
floating-point NN inference/training with intensive-CIM sparse-digital architecture,” IEEE Journal of Solid-State Circuits, vol. 59, no. 8, pp. 2630–2643, Aug. 2024.

 Floating-point CIM systems must balance full IEEE-754 precision with enough speed, yet existing approaches—wide fixed-
point alignment, bank-local FP logic, or exponent/mantissa splits—either introduce serial bottlenecks or fail to fully exploit
parallelism. Paper [1] observes that CNN exponents follow a near-Gaussian distribution and routes the dense “intensive”
majority through a parallel CIM core (with on-the-fly alignment) and the sparse minority through a digital core with specialized
encoding.
 Building on strategy in paper [1], we employ five core mechanisms—parallel processing, CIM pipelining, round-robin banking,
custom sparse encoding & refill, and adjustable precision—to realize a high-speed, energy-optimized architecture that
maintains full IEEE-754 accuracy.

 Our architecture preserves full IEEE-754 accuracy while delivering substantive improvements: parallel processing for
odd/even output channel in intensive core cuts total layer time by 50%；CIM pipelining keeps every MAC unit fully engaged,
yielding a 1.5× overall speedup over non-pipelined designs；round-robin banking reduces fetch latency from tens of cycle to
one.
 Within the above framewrok, adjustable precision further trims per-layer energy by 14% (Fig. 5) with 99.95 % accuracy (Fig.
4), cutting per-layer latency by 56.25 % along with parallel processing (Fig. 6).

Fig. 1 Inten. Parallel Processing Fig. 2 Timeline With and Without CIM Pipelining

(1) Parallel Processing: We align the intensive and sparse computation streams so neither path dominate the other, eliminating
critical bottlenecks and ensuring both cores run at full capacity (Fig. 1).
(2) CIM Pipelining: Each MAC unit immediately begins processing the next activation batch as soon as it finishes its current task,
keeping all units active throughout convolution and maximizing throughput (Fig. 2).
(3) Round-Robin Banking: Sparse entries are striped across multiple single-port SRAM banks; broadcasting read and write
addresses to all banks enables true concurrent access and dramatically reduces fetch latency (Fig. 3).
(4) Custom Sparse Encoding & Refill: Every encoding format embeds bias-lookup indices and reference address directly within
each 32-bit entry, removing extra decode stages
(5) Adjustable Precision: By disabling a few least-significant multiplier bits in the intensive path, we shorten multiply cycles and
cut energy per layer with negligible impact on overall accuracy.

Fig. 3 Round-Robin Banking

