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Abstract 

The development of quantum computing poses a significant threat to conventional 

cryptographic protocols. In response, this project advances post-quantum cryptography by 

developing a novel FPGA implementation of the Falcon algorithm, a key candidate 

renowned for its robustness against quantum attacks and efficient lattice-based signatures. 

Transitioning from C code to synthesizable Hardware Description Language (HDL) via 

High-Level Synthesis (HLS), we optimize critical computational elements such as Fast 

Fourier Transform (FFT) and Number Theoretic Transform (NTT) to enhance performance 

and security. 

At the beginning of the report, we will talk about the falcon algorithm’s advantages, 

along with its main function. We aim to improve the Falcon algorithm by transforming 

FFT/inverse FFT/NTT/inverse NTT into hardware. 

Hardware optimization steps included transforming C code into HLS to make it 

synthesizable, restructuring FFT, inverse FFT, NTT, and inverse NTT for better data flow 

and execution time reduction. Additionally, we refined the logic design to minimize FPGA 

resource usage without sacrificing performance. Further optimization efforts involved 

streamlining the pipeline stages, enhancing parallel processing capabilities, and optimizing 

memory usage to reduce latency and increase throughput. 

Furthermore, we employ middleware that manages communication and task 

scheduling between the software interface and the FPGA hardware. This approach allows 

scalable design, e.g. the increase of the hardware component without the modification on 

application code. 

The project is integrated into an MPSoC with three user-accessible APIs: KeyGen, 

Sign, and Verify. We plan to deploy these capabilities in a USB dongle format, 

communicating with PC or notebook via the FIDO2 CTAP2 protocol. This approach aligns 

with the FIDO Alliance's specifications for hardware-based authentication, which enhances 

security by reducing reliance on passwords and simplifying authentication processes across 

various platforms. 

The experiment results demonstrate that our hardware-accelerated components 

substantially outperform traditional software-based methods, setting a new benchmark for 

future developments in hardware-accelerated cryptography and ensuring scalability and 

adaptability in the evolving landscape of cybersecurity. 
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1. Background 

In response to the threat posed by quantum computers to existing cryptographic 

standards, post-quantum cryptography (PQC) has become a vital research area. The Falcon 

algorithm [1] stands out in this context for its resistance to quantum attacks. A major 

challenge with Falcon is its lengthy execution times when implemented in software, 

limiting its practical use. 

2. Purpose 

Our research aims to address the challenge of lengthy execution times by transforming 

the Falcon algorithm from software into synthesizable Hardware Description Language 

(HDL) for hardware acceleration. We employ High-Level Synthesis (HLS) to accelerate 

the hardware development process and restructure the HLS code to optimize performance. 

The heart of our contribution focuses on optimizing critical components such as Fast 

Fourier Transform (FFT), inverse FFT (iFFT), Number Theoretic Transform (NTT), and 

inverse NTT (iNTT), enhancing both computational efficiency and security.  

A particularly innovative aspect of our work is the integration of PQC with hardware 

through a hardware/software co-design approach. This methodology enables the Falcon 

algorithm to be executed more efficiently on hardware platforms. We have finalized the 

hardware design, generated a bitstream, and developed middleware on the PS (Processing 

Subsystem) side of a SoC to manage and distribute requests for PL (Programmable Logic) 

side kernel functions, originating from the Falcon flow. This setup communicates with a 

KV260 FPGA board through Python’s PYNQ API. This integration allows the full Falcon 

process to be executed on the board, significantly reducing execution times compared to 

its software-only counterpart.  

This project advances the field of post-quantum cryptography by providing a more 

secure and efficient solution to the threats posed by quantum computers and sets a 

foundational framework for future research in hardware-accelerated cryptography. 

3. Method 

3.1 Hardware acceleration 

3.1.1 Synthesizable Implementation 

Consider the FFT as an example: initially, we allowed computation loop boundary to 

be variable, which requires synthesizing logic to handle these boundaries [3], potentially 

extending execution time. Therefore, we must address the issue of the unbounded loop 

structure. By using the indexing from the iterative radix-2 FFT algorithm with bit-reversal 

permutation, each stage loops 256 times. Therefore, we set the boundary at 256 for each 

stage. Following this, we outline the indexing for each stage:  
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• i = n + ((n / index_const) * index_const) 

• i_gm = n / index_const 

3.1.2 Datapath Restructure 

To save the use of memory and area, we separate each stage and reuse the processing 

element (PE). We connect several functions (FFT here) in a staged fashion with arrays (fin) 

acting as buffers between the stages. Fig. 3-1 provides a graphical depiction of this process. 

 

Fig.3-1 Process and structure (reuse PE) of FFT 

From Fig. 3-1, we can see that FFT algorithm is calculated by loading data from the 

memories into the PEs and storing the result again in the memories. This process is iterated 

until the complete FFT is computed. The reuse of the PEs for different stages reduces the 

number of butterflies. In our project, we use one PE and one in-place memory buffer. With 

HLS, we can easily extend the number of PEs [4] to achieve more parallelism. 

3.1.3 Complex Multiplication 

The multiplication of two complex numbers (𝑋𝑟 + 𝑗𝑋𝑖) and (𝑌𝑟 + 𝑗𝑌𝑖) is defined as: 

𝑍𝑟 = 𝑋𝑟 ∙ 𝑌𝑟 − 𝑋𝑖 ∙ 𝑌𝑖 

𝑍𝑖 = 𝑋𝑟 ∙ 𝑌𝑖 + 𝑋𝑖 ∙ 𝑌𝑟 

where 𝑍𝑟 is the real part of the result and 𝑍𝑖 is its imaginary part. 

Instead of using 4 real multipliers, a structure with 3 real multipliers can be obtained by 

rewriting as [2]: 
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𝑡𝑚𝑝 = 𝑌𝑖 ∙ (𝑋𝑟 − 𝑋𝑖) 

𝑍𝑟 = 𝑋𝑟 ∙ (𝑌𝑟 − 𝑌𝑖) + 𝑡𝑚𝑝 

𝑍𝑖 = 𝑋𝑖 ∙ (𝑌𝑟 + 𝑌𝑖) + 𝑡𝑚𝑝 

This structure leads to area reduction although the usage of 5 adders instead of 2 adders 

is needed in the direct implementation, since multipliers require significantly more area 

than adders. 

3.1.4 Combine 4 Algorithms in One Hardware 

⚫ FFT & NTT 

First, the following formula shows the algorithm of the forward transformation of DFT 

and the forward transformation of  ã = NTT(a) 

DFT：Xk = ∑ x[i]
n−1

i=0
e

−j2πik
n , k = 0,1,2, … , n − 1 

NTT：ã[i] = ∑ x[j]
n−1

j=0
ωij mod q, for i = 0,1, … , n − 1 

NTT is a specialized version of the discrete Fourier transform, as we implement FFT, 

computing DFT in O(nlogn), we can also implement NTT in O(nlogn). On the left side of 

Fig. 3-2 shows the block diagram of forward FFT/NTT. 

Because of those similarities of FFT/NTT, we try to combine them together to possibly 

share the logic in processing element. Table 3-1 demonstrates the resource usage of re-

structured FFT/NTT, and the resource usage after combining them together. 

Table 3-1 

Re-structured FFT/NTT 

Resource DSP FF LUT 

FFT 61 8414 11456 

NTT 30 4016 7278 

FFT_NTT 41 6841 8637 

 

⚫ FFT&iFFT, NTT&iNTT 

Let's look at the inverse FFT: 

x[n] =
1

n
∑ 𝑋[𝑚]

N−1

m=0
e

j2πmn
N  
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We can see that apart from the difference of the index of twiddle factors, it is divided by N 

outside the sigma. In our Falcon project, N is defined to 1024, which is a power of 2, can 

be seen as shifting elements in binary. 

Fig. 3-2 shows both the forward/inverse FFT/NTT. We can see that FFT/iFFT have the 

same operators, just in a different order, we can reuse the previous PE which compute 

FFT/NTT to share their operators. In the next part, we will explain how to also integrate 

the division by N outside of the inverse FFT/NTT sigma into the kernel. 

 

Fig. 3-2 Combination of inverse/forward FFT/NTT 

⚫ Output Copy 

Since we've allocated an in-place memory buffer to calculate and store data, we must 

send that data to output after finishing the computation. Fig. 3-2 shows a brief structure 

about our kernel. 

1. f is the user input, which expects to return the calculated forward/inverse 

FFT/NTT. 

2. in_copy is a module looping N times copying data from f to our memory buffer 

in-place buffer. 

3. The module out_copy is crucial here; we implement the calculation (dividing by 

N) here. Because the computation for this part is placed outside sigma, and the 

module out_copy is also activated only after the computation inside sigma is 

completed, the purpose is to transmit the computations completed within sigma 

from in-place buffer to f through looping N times. Therefore, we can embed the 

calculation of dividing by N in the outermost layer of inverse FFT/NTT right 

here. 
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3.1.5 Share the Memory 

Since FFT uses the double datatype and NTT uses uint16_t, we must utilize two 

different buffers to store their respective computational results. We consider using a shared 

buffer, aims to reduce our memory usage. Thus, we use a self-defined datatype memcell to 

save data. A memcell is a union that can save 1 64-bits floating data or 4 16-bits unsigned 

integer. 

Table 3-2 

Combine FFT / iFFT / NTT / iNTT (inde: separate buffers, Ver0: combine buffers) 

Resource BRAM DSP FF LUT 

fiFFNTT inde 32 79 13333 15919 

fiFFNTT Ver0 26 78 11774 13543 

From Table 3-2, we can see that the reduction of memories and area is significant. 

Finally, we combined 4 algorithms (FFT, iFFT, NTT, iNTT), named as fiFFNTT 

(forward/inverse Fast-Fourier & Number Theoretic Transform) 

Comparing Table 3-1 and Table 3-2, we also discover the increasing usage of DSP, 

since the inverse FFT&NTT need other calculations outside the main computing loop 

(sigma), which are dividing by N (iFFT) and Montgomery multiplication (iNTT) 

Calculating the inverse Fast Fourier Transform (iFFT) with division operations on 

double type elements significantly increases DSP usage. The later part will solve this issue 

by applying a double shifter. 

3.1.6 Double Shifter 

Based on IEEE-754 double precision, we implement a shifter which can shift the 

variable with data type double to implement dividing N in iFFT.  

Flow: 

1. Get the exponent, which is located at bit 62 to 52. 

2. Subtract 9 to exponent (which is dividing double by 2^9) 

3. Shift back to bit 62 to 52. 

4. Handle underflow/overflow: 

The above statement replaces the usage of DSPs (11 DSPs) with just some simple logic. 

3.1.7 Share the Multiplier 

To share the Multiplier, we deconstructed the complex multiplier and monty multiplier 

in the PE, and we encapsulated the 32-bit integer, 64-bit double adder and multiplier into 

functions to limit the usage using pragma to realize sharing multiplier and adder. 
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3.1.8 Embed Falcon Flow 

After sharing the memories and multiplier, we introduced our most balanced 

optimization. In addition to combining four functions, we expand the function coverage to 

adj_fft and mul_fft. The reason we integrated these two functions is the consecutive usage 

in Falcon flow. Since the FFT and iFFT implemented in HW have different output orders 

from the SW implementation, we must add a converter to successfully communicate with 

SW. Therefore, if the functions are frequently called, the time consumed in conversion is 

unacceptable. To include these two functions, we can eliminate the delay from HW and 

SW communicated conversion. 

4. FPGA Implementation 

4.1 HW/SW Co-design 

 

Fig. 4-1 Architecture of the Falcon flow 

Fig. 4-1 outlines our architecture where we run Falcon on the host side (PS side) and 

have multiple fiFFNTT wrappers on the FPGA (PL side), interspersed with a middleware 

layer. This middleware is designed to receive fiFFNTT requests from the host side and 

allocate them to the available fiFFNTT hardware that is not currently operating. On the 

host side, three APIs (KeyGen, Sign, Verify) are exposed to the user. 

4.1.1 Middleware 

To manage simultaneous requests from Falcon, we developed middleware that 

preloads and process multiple requests, efficiently managing buffer usage, Initially, we 

used a custom datatype called ̀ memcell` to accommodate different data types for FFT/NTT 

operations, but this slowed execution speed. We resolved this by allocating separate buffers 

for each data type on the software side, where ample memory ensures efficient resource 

management without impacting hardware capabilities.  
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Fig. 4-2 Middleware 

5. Result 

Table 5-1 

Final resource usage (fiFFNTT wrapper includes 2 fiFFNTT kernels) 

Resource BRAM DSP FF LUT 

fiFFNTT wrapper 48 127 30345 25678 

 

Table 5-2 

Final speed (Unit: ms) 

Function FFT iFFT NTT iNTT 

Python 28.3617 29.9833 32.8956 34.3557 

Initial HLS 1.7429 2.2315 3.3797 4.3449 

Final optimization 0.1372 0.1631 0.1951 0.1773 

Speed up rate 207 184 170 194 

 

Table 5-3 

Final speed (Unit: ms) 

Version KeyGen Sign Verify 

Original software 100.4 2053.3 139.9 

HW/SW co-design with middleware 18.9 747.5 60.7 
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6. Future Work and Conclusion 

 

Fig. 6-1 System view 

During the chip verification phase, we integrated multiple kernels into the PL side of 

the MPSoC to handle concurrent requests, and middleware to manage requests from Falcon. 

To minimize the high communication overhead between hardware and software (as 

illustrated by the green double arrow in Fig. 4-1), the middleware will be implemented as 

firmware on the RISC-V CPU within the Caravel SoC. 

Additionally, the kernel will be integrated into the user project on the Caravel SoC 

which will be included in the tape-out of the Caravel Chip DUT. This integration provides 

user-accessible APIs and is encapsulated in an FPGA USB dongle. The dongle facilitates 

PC communication via FIDO2 CTAP2, adhering with FIDO Alliance specifications for 

hardware-based authentication. This enhances security and simplifies authentication across 

different platforms.  

In conclusion, our research has significantly advanced the field of post-quantum 

cryptography by accelerating the Falcon algorithm through hardware. We have not only 

streamlined the development process but also greatly improved the computational 

efficiency and security of critical cryptographic operations such as FFT, iFFT, NTT, and 

iNTT.  

Our innovative hardware/software co-design approach has successfully integrated the 

Falcon algorithm with hardware platforms, notably reducing execution times through 

effective management and distribution of cryptographic tasks, further underscore our 

project’s practical implications, allowing for real-time cryptographic processing that 

significantly outperforms traditional software-based methods.  

However, there remains a challenge: the middleware still operates as software on the 

PS side, leading to notable hardware/software communication overhead. Future efforts will 

focus on transforming the middleware into firmware on the hardware side to further reduce 

these inefficiencies.  
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Our project provides a robust response to the threats posed by quantum computing and 

establishes a foundational framework for future innovations in hardware-accelerated 

cryptography, paving the way for more secure and efficient cryptographic solutions. 

7. Review and Reflection 

From this project, we have learned a lot. In the first half of the semester, we made 

some preparations for the project in the next semester, including getting familiar with the 

entire Caravel SoC environment, learning embedding programming through labs, 

practicing remote operation of FPGA through Python, and getting familiar with Verilog 

and HLS, etc. In the second half of the semester, after determining the topic, we first studied 

the entire Falcon algorithm. Since we did not have relevant background knowledge, we 

searched a lot of literature, learned basic cryptography knowledge, and all the mathematical 

theories applied in Falcon. Then we selected several important kernel functions to try to 

accelerate through HLS.  

Very few reference materials have done HLS for Falcon, and they only rewrite the C 

code without optimizing the entire architecture, result in the enormous amount of hardware 

resources usage and long execution time. So, we spent a lot of time thinking about how to 

optimize the original kernel function. After completing the hardware architecture of the 

kernel function, we need to connect the Falcon running on the software side with our 

hardware. In response, we need to design middleware to handle communication on both 

sides. During the process, we found that the data type has a great impact on the overall 

performance, and the entire flow of Falcon will use different data types. If not handled well, 

the performance may even be worse than the original Falcon. 

In addition to learning professional knowledge, we also learned how a team can work 

together to solve a difficult problem, including how to use software such as GitHub, Slack, 

and HackMD for collaboration, how to find the necessary literature, how to divide and 

conquer, and so on. In conclusion, this course has been very rewarding, and we would like 

to thank Professor Jiin Lai for his guidance. 
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