

Department of Electrical Engineering,

National Tsing Hua University

Special Topic on Implementation

Research Summary

Innovative FPGA Implementation of

High-Level Synthesis in Post-Quantum

Cryptography: Hardware Acceleration for

Falcon Digital Signature

FPGA實現高階合成於後量子密碼學：

Falcon數位簽章之硬體加速

整合快速傅立葉變換與數論轉換

Major Category: System major category of the Topic contents. Please confirm

the category with the advisor.)

Group Number: A400 (Fill the group numb

Advisor: Jiin Lai

Members: Kuan-Hsi Chen, You-Wei Liu, Sheng-Ta Chen,

 Yan-Zhi Wang, Bo-Han Chen

Research Period: From (2024/02/05) to (2024/05/05).

i

Abstract

The development of quantum computing poses a significant threat to conventional

cryptographic protocols. In response, this project advances post-quantum cryptography by

developing a novel FPGA implementation of the Falcon algorithm, a key candidate

renowned for its robustness against quantum attacks and efficient lattice-based signatures.

Transitioning from C code to synthesizable Hardware Description Language (HDL) via

High-Level Synthesis (HLS), we optimize critical computational elements such as Fast

Fourier Transform (FFT) and Number Theoretic Transform (NTT) to enhance performance

and security.

At the beginning of the report, we will talk about the falcon algorithm’s advantages,

along with its main function. We aim to improve the Falcon algorithm by transforming

FFT/inverse FFT/NTT/inverse NTT into hardware.

Hardware optimization steps included transforming C code into HLS to make it

synthesizable, restructuring FFT, inverse FFT, NTT, and inverse NTT for better data flow

and execution time reduction. Additionally, we refined the logic design to minimize FPGA

resource usage without sacrificing performance. Further optimization efforts involved

streamlining the pipeline stages, enhancing parallel processing capabilities, and optimizing

memory usage to reduce latency and increase throughput.

Furthermore, we employ middleware that manages communication and task

scheduling between the software interface and the FPGA hardware. This approach allows

scalable design, e.g. the increase of the hardware component without the modification on

application code.

The project is integrated into an MPSoC with three user-accessible APIs: KeyGen,

Sign, and Verify. We plan to deploy these capabilities in a USB dongle format,

communicating with PC or notebook via the FIDO2 CTAP2 protocol. This approach aligns

with the FIDO Alliance's specifications for hardware-based authentication, which enhances

security by reducing reliance on passwords and simplifying authentication processes across

various platforms.

The experiment results demonstrate that our hardware-accelerated components

substantially outperform traditional software-based methods, setting a new benchmark for

future developments in hardware-accelerated cryptography and ensuring scalability and

adaptability in the evolving landscape of cybersecurity.

ii

Table of Contents
1. Background ... 1

2. Purpose .. 1

3. Method .. 1

3.1 Hardware acceleration .. 1

3.1.1 Synthesizable Implementation .. 1

3.1.2 Datapath Restructure ... 2

3.1.3 Complex Multiplication .. 2

3.1.4 Combine 4 Algorithms in One Hardware ... 3

3.1.5 Share the Memory ... 5

3.1.6 Double Shifter ... 5

3.1.7 Share the Multiplier .. 5

3.1.8 Embed Falcon Flow .. 6

4. FPGA Implementation .. 6

4.1 HW/SW Co-design ... 6

4.1.1 Middleware ... 6

5. Result .. 7

6. Future Work and Conclusion .. 8

7. Review and Reflection .. 9

8. Reference .. 9

1

1. Background

In response to the threat posed by quantum computers to existing cryptographic

standards, post-quantum cryptography (PQC) has become a vital research area. The Falcon

algorithm [1] stands out in this context for its resistance to quantum attacks. A major

challenge with Falcon is its lengthy execution times when implemented in software,

limiting its practical use.

2. Purpose

Our research aims to address the challenge of lengthy execution times by transforming

the Falcon algorithm from software into synthesizable Hardware Description Language

(HDL) for hardware acceleration. We employ High-Level Synthesis (HLS) to accelerate

the hardware development process and restructure the HLS code to optimize performance.

The heart of our contribution focuses on optimizing critical components such as Fast

Fourier Transform (FFT), inverse FFT (iFFT), Number Theoretic Transform (NTT), and

inverse NTT (iNTT), enhancing both computational efficiency and security.

A particularly innovative aspect of our work is the integration of PQC with hardware

through a hardware/software co-design approach. This methodology enables the Falcon

algorithm to be executed more efficiently on hardware platforms. We have finalized the

hardware design, generated a bitstream, and developed middleware on the PS (Processing

Subsystem) side of a SoC to manage and distribute requests for PL (Programmable Logic)

side kernel functions, originating from the Falcon flow. This setup communicates with a

KV260 FPGA board through Python’s PYNQ API. This integration allows the full Falcon

process to be executed on the board, significantly reducing execution times compared to

its software-only counterpart.

This project advances the field of post-quantum cryptography by providing a more

secure and efficient solution to the threats posed by quantum computers and sets a

foundational framework for future research in hardware-accelerated cryptography.

3. Method

3.1 Hardware acceleration

3.1.1 Synthesizable Implementation

Consider the FFT as an example: initially, we allowed computation loop boundary to

be variable, which requires synthesizing logic to handle these boundaries [3], potentially

extending execution time. Therefore, we must address the issue of the unbounded loop

structure. By using the indexing from the iterative radix-2 FFT algorithm with bit-reversal

permutation, each stage loops 256 times. Therefore, we set the boundary at 256 for each

stage. Following this, we outline the indexing for each stage:

2

• i = n + ((n / index_const) * index_const)

• i_gm = n / index_const

3.1.2 Datapath Restructure

To save the use of memory and area, we separate each stage and reuse the processing

element (PE). We connect several functions (FFT here) in a staged fashion with arrays (fin)

acting as buffers between the stages. Fig. 3-1 provides a graphical depiction of this process.

Fig.3-1 Process and structure (reuse PE) of FFT

From Fig. 3-1, we can see that FFT algorithm is calculated by loading data from the

memories into the PEs and storing the result again in the memories. This process is iterated

until the complete FFT is computed. The reuse of the PEs for different stages reduces the

number of butterflies. In our project, we use one PE and one in-place memory buffer. With

HLS, we can easily extend the number of PEs [4] to achieve more parallelism.

3.1.3 Complex Multiplication

The multiplication of two complex numbers (𝑋𝑟 + 𝑗𝑋𝑖) and (𝑌𝑟 + 𝑗𝑌𝑖) is defined as:

𝑍𝑟 = 𝑋𝑟 ∙ 𝑌𝑟 − 𝑋𝑖 ∙ 𝑌𝑖

𝑍𝑖 = 𝑋𝑟 ∙ 𝑌𝑖 + 𝑋𝑖 ∙ 𝑌𝑟

where 𝑍𝑟 is the real part of the result and 𝑍𝑖 is its imaginary part.

Instead of using 4 real multipliers, a structure with 3 real multipliers can be obtained by

rewriting as [2]:

3

𝑡𝑚𝑝 = 𝑌𝑖 ∙ (𝑋𝑟 − 𝑋𝑖)

𝑍𝑟 = 𝑋𝑟 ∙ (𝑌𝑟 − 𝑌𝑖) + 𝑡𝑚𝑝

𝑍𝑖 = 𝑋𝑖 ∙ (𝑌𝑟 + 𝑌𝑖) + 𝑡𝑚𝑝

This structure leads to area reduction although the usage of 5 adders instead of 2 adders

is needed in the direct implementation, since multipliers require significantly more area

than adders.

3.1.4 Combine 4 Algorithms in One Hardware

⚫ FFT & NTT

First, the following formula shows the algorithm of the forward transformation of DFT

and the forward transformation of ã = NTT(a)

DFT：Xk = ∑ x[i]
n−1

i=0
e

−j2πik
n , k = 0,1,2, … , n − 1

NTT：ã[i] = ∑ x[j]
n−1

j=0
ωij mod q, for i = 0,1, … , n − 1

NTT is a specialized version of the discrete Fourier transform, as we implement FFT,

computing DFT in O(nlogn), we can also implement NTT in O(nlogn). On the left side of

Fig. 3-2 shows the block diagram of forward FFT/NTT.

Because of those similarities of FFT/NTT, we try to combine them together to possibly

share the logic in processing element. Table 3-1 demonstrates the resource usage of re-

structured FFT/NTT, and the resource usage after combining them together.

Table 3-1

Re-structured FFT/NTT

Resource DSP FF LUT

FFT 61 8414 11456

NTT 30 4016 7278

FFT_NTT 41 6841 8637

⚫ FFT&iFFT, NTT&iNTT

Let's look at the inverse FFT:

x[n] =
1

n
∑ 𝑋[𝑚]

N−1

m=0
e

j2πmn
N

4

We can see that apart from the difference of the index of twiddle factors, it is divided by N

outside the sigma. In our Falcon project, N is defined to 1024, which is a power of 2, can

be seen as shifting elements in binary.

Fig. 3-2 shows both the forward/inverse FFT/NTT. We can see that FFT/iFFT have the

same operators, just in a different order, we can reuse the previous PE which compute

FFT/NTT to share their operators. In the next part, we will explain how to also integrate

the division by N outside of the inverse FFT/NTT sigma into the kernel.

Fig. 3-2 Combination of inverse/forward FFT/NTT

⚫ Output Copy

Since we've allocated an in-place memory buffer to calculate and store data, we must

send that data to output after finishing the computation. Fig. 3-2 shows a brief structure

about our kernel.

1. f is the user input, which expects to return the calculated forward/inverse

FFT/NTT.

2. in_copy is a module looping N times copying data from f to our memory buffer

in-place buffer.

3. The module out_copy is crucial here; we implement the calculation (dividing by

N) here. Because the computation for this part is placed outside sigma, and the

module out_copy is also activated only after the computation inside sigma is

completed, the purpose is to transmit the computations completed within sigma

from in-place buffer to f through looping N times. Therefore, we can embed the

calculation of dividing by N in the outermost layer of inverse FFT/NTT right

here.

5

3.1.5 Share the Memory

Since FFT uses the double datatype and NTT uses uint16_t, we must utilize two

different buffers to store their respective computational results. We consider using a shared

buffer, aims to reduce our memory usage. Thus, we use a self-defined datatype memcell to

save data. A memcell is a union that can save 1 64-bits floating data or 4 16-bits unsigned

integer.

Table 3-2

Combine FFT / iFFT / NTT / iNTT (inde: separate buffers, Ver0: combine buffers)

Resource BRAM DSP FF LUT

fiFFNTT inde 32 79 13333 15919

fiFFNTT Ver0 26 78 11774 13543

From Table 3-2, we can see that the reduction of memories and area is significant.

Finally, we combined 4 algorithms (FFT, iFFT, NTT, iNTT), named as fiFFNTT

(forward/inverse Fast-Fourier & Number Theoretic Transform)

Comparing Table 3-1 and Table 3-2, we also discover the increasing usage of DSP,

since the inverse FFT&NTT need other calculations outside the main computing loop

(sigma), which are dividing by N (iFFT) and Montgomery multiplication (iNTT)

Calculating the inverse Fast Fourier Transform (iFFT) with division operations on

double type elements significantly increases DSP usage. The later part will solve this issue

by applying a double shifter.

3.1.6 Double Shifter

Based on IEEE-754 double precision, we implement a shifter which can shift the

variable with data type double to implement dividing N in iFFT.

Flow:

1. Get the exponent, which is located at bit 62 to 52.

2. Subtract 9 to exponent (which is dividing double by 2^9)

3. Shift back to bit 62 to 52.

4. Handle underflow/overflow:

The above statement replaces the usage of DSPs (11 DSPs) with just some simple logic.

3.1.7 Share the Multiplier

To share the Multiplier, we deconstructed the complex multiplier and monty multiplier

in the PE, and we encapsulated the 32-bit integer, 64-bit double adder and multiplier into

functions to limit the usage using pragma to realize sharing multiplier and adder.

6

3.1.8 Embed Falcon Flow

After sharing the memories and multiplier, we introduced our most balanced

optimization. In addition to combining four functions, we expand the function coverage to

adj_fft and mul_fft. The reason we integrated these two functions is the consecutive usage

in Falcon flow. Since the FFT and iFFT implemented in HW have different output orders

from the SW implementation, we must add a converter to successfully communicate with

SW. Therefore, if the functions are frequently called, the time consumed in conversion is

unacceptable. To include these two functions, we can eliminate the delay from HW and

SW communicated conversion.

4. FPGA Implementation

4.1 HW/SW Co-design

Fig. 4-1 Architecture of the Falcon flow

Fig. 4-1 outlines our architecture where we run Falcon on the host side (PS side) and

have multiple fiFFNTT wrappers on the FPGA (PL side), interspersed with a middleware

layer. This middleware is designed to receive fiFFNTT requests from the host side and

allocate them to the available fiFFNTT hardware that is not currently operating. On the

host side, three APIs (KeyGen, Sign, Verify) are exposed to the user.

4.1.1 Middleware

To manage simultaneous requests from Falcon, we developed middleware that

preloads and process multiple requests, efficiently managing buffer usage, Initially, we

used a custom datatype called ̀ memcell` to accommodate different data types for FFT/NTT

operations, but this slowed execution speed. We resolved this by allocating separate buffers

for each data type on the software side, where ample memory ensures efficient resource

management without impacting hardware capabilities.

7

Fig. 4-2 Middleware

5. Result

Table 5-1

Final resource usage (fiFFNTT wrapper includes 2 fiFFNTT kernels)

Resource BRAM DSP FF LUT

fiFFNTT wrapper 48 127 30345 25678

Table 5-2

Final speed (Unit: ms)

Function FFT iFFT NTT iNTT

Python 28.3617 29.9833 32.8956 34.3557

Initial HLS 1.7429 2.2315 3.3797 4.3449

Final optimization 0.1372 0.1631 0.1951 0.1773

Speed up rate 207 184 170 194

Table 5-3

Final speed (Unit: ms)

Version KeyGen Sign Verify

Original software 100.4 2053.3 139.9

HW/SW co-design with middleware 18.9 747.5 60.7

8

6. Future Work and Conclusion

Fig. 6-1 System view

During the chip verification phase, we integrated multiple kernels into the PL side of

the MPSoC to handle concurrent requests, and middleware to manage requests from Falcon.

To minimize the high communication overhead between hardware and software (as

illustrated by the green double arrow in Fig. 4-1), the middleware will be implemented as

firmware on the RISC-V CPU within the Caravel SoC.

Additionally, the kernel will be integrated into the user project on the Caravel SoC

which will be included in the tape-out of the Caravel Chip DUT. This integration provides

user-accessible APIs and is encapsulated in an FPGA USB dongle. The dongle facilitates

PC communication via FIDO2 CTAP2, adhering with FIDO Alliance specifications for

hardware-based authentication. This enhances security and simplifies authentication across

different platforms.

In conclusion, our research has significantly advanced the field of post-quantum

cryptography by accelerating the Falcon algorithm through hardware. We have not only

streamlined the development process but also greatly improved the computational

efficiency and security of critical cryptographic operations such as FFT, iFFT, NTT, and

iNTT.

Our innovative hardware/software co-design approach has successfully integrated the

Falcon algorithm with hardware platforms, notably reducing execution times through

effective management and distribution of cryptographic tasks, further underscore our

project’s practical implications, allowing for real-time cryptographic processing that

significantly outperforms traditional software-based methods.

However, there remains a challenge: the middleware still operates as software on the

PS side, leading to notable hardware/software communication overhead. Future efforts will

focus on transforming the middleware into firmware on the hardware side to further reduce

these inefficiencies.

9

Our project provides a robust response to the threats posed by quantum computing and

establishes a foundational framework for future innovations in hardware-accelerated

cryptography, paving the way for more secure and efficient cryptographic solutions.

7. Review and Reflection

From this project, we have learned a lot. In the first half of the semester, we made

some preparations for the project in the next semester, including getting familiar with the

entire Caravel SoC environment, learning embedding programming through labs,

practicing remote operation of FPGA through Python, and getting familiar with Verilog

and HLS, etc. In the second half of the semester, after determining the topic, we first studied

the entire Falcon algorithm. Since we did not have relevant background knowledge, we

searched a lot of literature, learned basic cryptography knowledge, and all the mathematical

theories applied in Falcon. Then we selected several important kernel functions to try to

accelerate through HLS.

Very few reference materials have done HLS for Falcon, and they only rewrite the C

code without optimizing the entire architecture, result in the enormous amount of hardware

resources usage and long execution time. So, we spent a lot of time thinking about how to

optimize the original kernel function. After completing the hardware architecture of the

kernel function, we need to connect the Falcon running on the software side with our

hardware. In response, we need to design middleware to handle communication on both

sides. During the process, we found that the data type has a great impact on the overall

performance, and the entire flow of Falcon will use different data types. If not handled well,

the performance may even be worse than the original Falcon.

In addition to learning professional knowledge, we also learned how a team can work

together to solve a difficult problem, including how to use software such as GitHub, Slack,

and HackMD for collaboration, how to find the necessary literature, how to divide and

conquer, and so on. In conclusion, this course has been very rewarding, and we would like

to thank Professor Jiin Lai for his guidance.

8. Reference

[1] Fouque, Pierre-Alain, et al. "Falcon: Fast-Fourier Lattice-based Compact Signatures

over NTRU Specification." v1.2, 1 Oct. 2020, https://falcon-sign.info/

[2] Pedro Paz, Mario Garrido, “Efficient Implementation of Complex Multipliers

on FPGAs Using DSP Slices,” April 2023

[3] Michael Schmid, Dorian Amiet, Jan Wendler, Paul Zbinden, and Tao Wei, “Falcon

Takes Off - A Hardware Implementation of the Falcon Signature Scheme,” 2023

[4] Zeynep Kaya, Mario Garrido, “Memory-Based FFT Architecture with Optimized

Number of Multiplexers and Memory Usage,” IEEE Transactions on Circuits and

Systems, August 2023

