High-Frequency Financial Trading Platform Accelerator

%*ﬁﬁﬁi;ié““ﬁg

Eu tBI24 dp¥FE BAWKE ER 107061221 meakak 107061140 % F @

Abstract

S Speed and accuracy are the most essential elements in High-Frequency Trading(HFT).
However, trading nowadays is done by software. Restricted by the sequential execution of a
process in software, orders cannot be placed at the best time to make a profit. Thus, Field
Programmable Gate Array (FPGA) is chosen for implementation so that we can place the
orders in the shortest time when new market data packages are received, benefited from the
parallelism and high-speed calculation characteristics of the hardware.

We have done various HFT related simulations, designed algorithms with Verilog-HDL,
implemented and verified our designs on the Alveo U50 Data Center Accelerator Card. These
were first validated with C/C++ or Python as coding in software languages is relatively easier
than in HDL. As we collaborate with VSense Fintech Inc., some details are classified and will
not be disclosed. The works of another group (Group CS), will also be discussed briefly to
give a full picture of this research. Their parts will be credited in their subsections.

We began this research by understanding the anatomy of Internet packets(Section A) as
the market data(inputs) will come in that form. To reinforce our understanding, we built a
C/C++ program to analyze the incoming packets and obtain required information, such as
futures’ prices, and quantities.

Next, we designed and simulated a Futures’ Order Book (Section B and C) which
updates and stores vital information like futures’ prices, quantities, etc., to form a new
product, Synthetic Option. We also designed its related trading strategy (Section D and E)
that predicts if the latest traded future’s price aligns logically with the market situation. An
order decision will be made based on this information.

Finally, we designed some Trading Strategies for Compound Options and Futures
(Section E, F, and G). The objective is to predict a point, Spot, which is crucial in developing
most HFT-related strategies. It has to be noted that there neither is a “correct” value of Spot
nor can any financial model predict it flawlessly. However, the value of Spot is essential and
most of the trading strategies stem from it. Different from the order book strategies, Spot
enables us to predict the future price of futures, observe unreasonable market data, such that

1

we can make a profit by placing corresponding orders. By three different methods of
approximation and regression to find the Spot by programming, we have also designed
hardware methods based on the utility of similar triangles and binary search to eliminate the
utility of division while calculating. Afterward, with the obtain of Spot, and based on the
“Call-put parity” principle in economics, we analyzed the best option types and prices for
ordering, profiting from the high-frequency trading.

Introduction

Nowadays, financial technology has been mostly performed through software and
programming. In other words, the rate of placing new orders or updating orders for our sake
to make the most profit is limited by the computations and sequential processes of software.
Thus, the company, VSense Fintech Inc. is developing hardware solutions for financial
trading purposes.

For the special topic of implementation, we have been working with the company as it is
an “academy-industry cooperation”. By the implementation of hardware, we can benefit from
the parallelism characteristic of hardware and the high speed of computing. Multiple orders
can be done speedily and this will increase our real profits from trading in the real-life
financial market.

Our hardware developments focus on mainly two kinds of financial products. The first
kind of product is the regular order book products in which we aim to place our orders at the
1st rank of the five-ranked order book to be executed with a higher possibility. The other kind
of product is the compound options and future. For this kind of product, we have come up
with a simple strategy to be implemented and our design of performing division and
comparisons by advanced binary search.

Throughout this special topic of implementation, we have mostly performed software
simulations in Python, C, C++ then performed hardware design by Verilog-HDL. These logic
designs are implemented on the Alveo U50 Data Center Accelerator Card, which is a typical
FPGA board designed for massive computing.

Theory Analysis and System Design

Although we have done both software simulations and hardware design, we will focus
mostly on the hardware design in this abstract. Since we have been working on this project
with another group from the CS department, a proportion of research have been discussed
with them and a proportion of implementation was also of their work.

2

STRATEGY OF THE ORDER BOOK

For order book products, the trading is performed in the way of sorting orders from all
sellers and buyers through an order book, in which orders with higher rankings are most
likely to be executed. Accordingly, the Ethernet packets we receive from the company show
the best 5 ranking prices and quantities for each product.

Hence, the objective of the strategy developed here is to form a new product by the best
price and best quantity of an order book product. This information is obtained by updating the
market data received from the “Taifex Message Protocol”.

To implement order book strategies, we reconstructed the market data to observe the
market status. We formed the new product, Synthetic Option, by combining CALL (the right
to buy a stock) and PUT (the right to sell a stock) to make profits. The best ask/bid price of
synthetic future and the best ask/bid quantity of synthetic option for each strike price are the
statuses of Synthetic Option. Ask and bid indicates demand and supply respectively. The
status will be sent to the Trading Strategy modules mentioned in Section G to decide whether
to make an order. Detailed block diagrams are shown in Fig C.1.

en_call en_put en_call en_put

best_call_P_reg[31:0]

Price_Reg
r best_put_P_reg[31:0]| Best_Price_Mux | Pest call P[31:0]

best_call P_new[31:0]

best_put P_new[31:0] > best_put_P[31:0] best_Price[31:0]
Synthetic_Option —>

strike_price[31:0] — 4
I EEEE—
best_Quantity[15:0]

best_put_Q_new([15:0] > best_put Q[15:0]
best_call_Q_new[15:0]

—

. >
best_call_Q_reg[15:Q Best_Quantity_Mux best_call_Q[15:0] Synthetic_valid_1
Quantity_Reg]‘

Vv

best_put_Q_reg[15:0]

i L]

en_call en_put en_call en_put

Fig C.1 Modules of Synthetic Option Orderbook

The formulas of calculating the best price and best quantity of ask and bid respectively
are derived from the financial characteristics of the market data, shown in formula C.1 & C.2

best price = strike price + best call price — best put price (C.1)
best quantity = min(best call quantity, best put quantity) (C.2)

To perform this task, we choose between the latest market data and the previous best

3

values to be forwarded to the calculation module and decide the newest best price and best
quantity. Hence, the registers and value of multiplexers are updated whenever new market

data is sent (en_call or en_put) and the status of the Synthetic Option is also updated. Since
the logic of finding the best ask price/quantity and the best bid price/quantity are the same,

modules in Fig C.1 are used for both ask and bid.

These modules are used to find the best ask/bid price and best ask/bid quantity for a specific
strike price. We can duplicate these modules for each strike price to detect the status of the
synthetic option under each strike price in parallel. In this way, we can achieve the efficient
calculation of high-frequency trading.

STRATEGY OF THE COMPOUND OPTIONS AND FUTURES

The trading of compound options and futures requires our logic modules to output a
package with the “R0O1 format” mentioned in the “Taifex Message Protocol Regulations
Manual”[1], which includes information such as the header, product name, price, quantity,
execution type, etc.

The core of our strategy design of compound options and futures consists of two parts:
1. Observe the incoming packages for the latest market situation and try to place our order at
the first rank of the market’s order book. 2. After our order has been executed, hedging is
needed so that we can make a profit.

The reason we need a hedging process refers to the “call-put parity” in future trading
economics. “Call-put parity” is a principle that defines the relationship between the price of
European put and call options of the same class. The same underlying assets, strike price, and
expiration date are required to be in the same class. The put-call parity can be determined by
an equation C + PV(x) = P + S, where: C = price of the European call option, PV(x) = the
present value of the strike price (x), discounted from the value on the expiration date at the
risk-free rate, P = price of the European put, and S = spot price or the current market value
of the underlying asset.

To exercise the strategy, we have to find the point, Spot, first before getting into making
the orders. In Layman’s terms, Spot can be understood as the logical price in which a buyer
and seller agree to trade, and the point (spot, spoty) is theoretically believed to exist around
the center of all the blue and orange points (red square in Fig 2.). It needs to be noted that no
one has ever accurately determined the exact location of this mysterious point (spotx,spoty).
However, finding this point is of utmost importance in High-Frequency Trading (HFT) as
almost every kind of trading strategy stems from here.

Call / Ask Price
o
]

Fig 2. Graph of Call/Put Average Prices Calculated from Market Data

We’ve applied three methods: 1. Two Linear Equations Approximation, 2. Two Linear
Equations and Weighed Correction, 3. Quadratic Regression by Python/C++ to find the Spot.
Since we have developed the three methods to the extent that the results are similar and all
will tolerable error, we chose the “Two Linear Equations Approximation” method to be
implemented into hardware logic. Here, to apply our algorithm to hardware-based design, we
have developed the “Advanced Binary Search” method to avoid the utility of dividers.

The method of “Advanced Binary Search” is based on the fact that our equation to
calculate the Spot by division can be retransformed into an equation that only requires
multiplication and addition, and in which our Spot will be found when the equation equals
zero. Hence, we will have to search through all the possible ranges of Spot and plug the
values into the equation, then find the values whose outcome of the equation is closest to
zero. To increase the precision of searching, we divided each range of searching into 16
divisions and calculated spotx and spoty independently, owing to the good characteristics of
the financial parameters.

The method to find the values whose outcome of the equation is closest to zero is based
on this idea is called “double elimination” which is often used in real life like competitions
and tournaments. By comparing two values, the winner will be forwarded to the winner’s
brackets while the loser is forwarded to the loser’s brackets. In those brackets, two winners
from the previous comparisons will meet each other and be compared once again; losers vice
versa. Hence, by comparing all the 17 outcomes of the equation with sufficient times, spotx
and spoty can be found. Finally, the required financial parameters expected call price,
expected put price, the 4 differences of market prices and expected prices, call delta, and put
delta, etc. are calculated based on the Spot and sent to the modules where the ordering
strategies are developed. Fig3. shows the top view of the modules to calculate the Spot and
the financial parameters.

5 Call Ask | Call Ask Diff "
Call Ask 1 — e e >
CalBd | — Cal Bid Cal Bid Dif)
Put Ask | ——
Put Bid 1 —2 Put Ask Put Ack Dif

Call Ask Vaid 1 sk =

Put Bid I Put Bid Dif
Call Bid Valid 1 Differences [— >
Put Ask Valid 1 . &
Put Bid Vad 1 Rl G Expected Call ,
. Calculate Prices a0 —
Average Sk Right Smike Right Expected P
. Call Average = % Spot -
02 T) - R T I) v
< - b ke Lot ke Left 4 times 2
L ! Advanced
(call Rigt | gpin Call Right S
- Data .
Putdvege | Find | Call Let Call Let saen
Call Ask Vabd 20 ESY Points = i
Call Bid Vald 20 e Right e Righe BEes
. 2 3 times —_—
Put Ask Vakd 20
s PutLeit Put Left e |
Put Bid Valid 20 3 7 e Call Delta
SukePrice — o | Search | Calculate e
— Delta Put Delta
Spoty sy | || s
.

Fig 3. Modules of Processing Financial Parameters

The strategy of making the main order is developed by the following flow: To keep up
with the latest market data and adjust our orders, we first observe the trend of future prices.
By the price rise or price fall, we will decide whether to bid/ask put/call options by the
difference calculated from the previous section. Next, to decide the price of our order, we will
first start pricing from slightly higher/lower of the current market option price and take the
expected value calculated from the previous section as a reference to see whether the order is
worth it. This will give us information on how much an order can profit, whether it should be
repriced, or whether it should be canceled if it has been thrown but not executed. Fig 4.
shows the top view of the modules to decide the main order. There are more designs under
each module but the descriptions of those will not be disclosed in consideration of the
classified materials.

strike[31:0] call_bid_price[31:0]
—_— — |
hdr{7:0]
future_price[31:0) ption_typel1:0] call_ask_price[31:0) stop_order
—_— —|
Exectype[7:0]
call_bid_difif31:0] lexpected_call_price[3]:0]
—_ —
side[1:0]
put_bid_difif31:0] trend_change put_bid_price[31:0] new_order
——» Fuiure Observer
price[31:0]
call_ask_difi[31:0] put_ask_price[31:0 reorder
5 5 Order Maker
aty[15:0]
put_ask_diff[31:0] expected_put_price[3{-0) Order Manager cancel —> L,
—_— —
N . sym[79:0]
der_price[31:0]
jser_define[7:0]
order_ready
=
=
S B
= strike_valid rder_type[1:0]

clk
—
rst.n
—_—>
clic
—
rstn
—_—

order_state

Order Manager FSM
R02Z_executed
—|

Fig 4. Modules of the Main Order Strategy
6

The strategy of making the hedge order is developed by the following flow: If an order
has been executed, we will have to do the hedging option to make a profit. The option of
hedge order will be decided by the opposite of the executed order and related information
will be stored in the hedge order book. The price decision will be also done by first starting
slightly near the current market price then increased for bid or decreased for ask if the market
price has changed. Once the hedge order is executed, the process of trading is fully completed
and thus the order will be removed from the hedge order book. Fig 5. shows the top view of
the modules to decide the hedge order. There are more designs under each module but the
descriptions of those will not be disclosed in consideration of the classified materials.

pkﬁMes;afeType edge_receive hedge_state

pk_user_define[7-0] new_hedge
|
Hedge Manager FSM

Hedge
Receiver

RO2_executed_H
Em—

call_bid_price[31:0] L hdr[7:0]
— —
call_ask_price[31:0] Execlypel7.0]
—| —
expected_call_price[3]:0] side[1:0]
—_—
put_bid_price[31:0] new_order price[31:0]
B
stop_ordler
put_ask_price[31:0 reorder qy[15:0] Hedge Orderbook
»| Hedge Manager Order Maker_H >
expected_put_price[31:01 der_price[31:0] sym[79:0]
E—
pk_option_type[1:0) rder_type[1:0] ser_define[7-0]
— —
hedge_state optipn_type_H[1:0]
R R
strike_valid

order_ready [

Fig 5. Modules of the Hedge Order Strategy

st n
—_

clic
—
rstn
—
clie
rstn
clk

Results

Owing to the workload division, the results in this section only cover the
implementations that include the work from our group.

STRATEGY OF THE ORDER BOOK

Call valid ask 1 Call price ask | Call qty ask 1

Put valid bid 1 Put price bid 1 Put gty bid |
Strike

hplab@hplab-System-Product-Name:~/dma_ip_drivers/XDMA/linux-kernel/tools$./dma_to_device -d /dev/xdma®_h2c_0 -s 32 -c 1 -f /home/linajian
le/test_inputs/input2.bin

, value = OxOODOOOZO

device = /dev/gd
00000000 ~ 00 111600000050800P08O0O0BDEOBPOCD
000000160 ©x00000060000000006006000000000000

mad_c2h_0, size = 0x00000020, offset =

—0000 0000
000 0000
0000 0000
0000 0101
0000 0000
--0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
----0001 1001
---0000 0000
0000 0000
---0000 0000
0000 0000
0000 0000
06000 0000

0000 0001
----0000 1111
--0000 0000

0000 0000
0000 0000
----0001 0100
-06000 0000
--0000 0000

0x60000000, count = 1, loop = ©

=1

Fig 6. Implementation results of the Synthetic Option module

Fig 6. shows the implementation results of the Synthetic Option module on the Alveo
U50 Data Center Accelerator Card. The inputs and the outputs are boxed in the colors
mentioned in Fig R.2.1 and Fig R.2.2 respectively. Since the outputs are in hexadecimal
representation and placed in the Little-Endian order, we expect that Synthetic_price_ask 1 =
30 be represented as 1e000000 and Synthetic_qty_ask 1 =5 be represented as 0500. We can

see from the above the mentioned outputs are as expected.

STRATEGY OF THE COMPOUND OPTIONS AND FUTURES

Table 1.

Time Linear (E1) | Weighted Linear Quadratic TXFG1

(E2) Regression (E3) price
09:50 17572.87 17573.05 17573 17573
09:55 17559.59 17558.81 17559 17559
10:00 17569.47 17569.92 17570 17570
10:05 17566.82 17566.75 17567 17567
10:10 17571.06 17571.11 17571 17571
10:15 17553.78 17553.9 17554 17554

8

Table 1. shows the spotx obtained by the three different methods discussed. The inputs
are real market data on 7/21/2021 from 09:50~10:15. The last column shows the theoretical
value of the predicted spotx. As we can see, the results obtained from different methods are
similar and each with tolerable error.

side[1:0]
Mo 0

Fig 7. Verilog-HDL Simulation Results of Making the Main Order

Fig 7. shows an example of an order placed. The order shown is a new order with order
price = 619000 (619 in real-market), quantity = 1, and product name = TX018500L1,
indicating that this product is a TXO-type “call” product with the strike price being 18500
and placed in December of the year 2021.

Conclusion

We have designed and simulated various HFT-related algorithms in this research. The
outputs of our modules indicated that there are no apparent flaws in our current design. This
also justifies that we are on the right track. Shortly, we will continue to test our programs and
try to optimize them if possible. Additionally, based on the current estimated Spot and
ordering strategies, we will continue to implement our strategies of hedge orders so that the
“Call-Put Parity” principle can be realized and the whole trading becomes more complete and
practical for the financial trading market of options and futures.

References

[1] #F % #+ TCPIP_TMP_v2.13.0 (Taifex Message Protocol Regulations)

(The references for HFT and its trading strategies are scarcely available as they were mostly
developed by private companies.)

Reflections

Before working on this implementation project, we have not ever heard of compound
options or the financial terms related to the trading of order book products and futures.
Hence, it was quite a big challenge for us to learn about the related financial principles and
process of placing orders. From the receipt of market data to placing orders, there are a lot of
details and prototypes in between which we need to consider.

It is also our very first time to learn that our knowledge in electrical engineering can be
applied to fields like financial technology to solve some computation speed problems in the
current financial world. By the process of programming to verify our thoughts and designing
hardware logic to realize the trading strategies we desire, we’ve enhanced our capability in
software verification to hardware implementation. We believe that these are essential skills to
become an engineer in the field.

Nonetheless, through this implementation project, we got the opportunity to work and
discuss with the company VSense Fintech Inc., thus increasing our experiences of
communicating with the industry and solving real-life problems. With our implementation
project only covering a small portion of the financial products and possible trading policies,
there is still quite a long way to go until hardware solutions of each financial trading method
are developed and utilized in the real-life markets.

10

