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中文摘要 

 

靜態隨機存取記憶體是一種揮發性的記憶體用來在積體電路中的內嵌式記憶體部

分。靜態隨機存取記憶體贏過其他種型態的記憶體是因為他的速度較快且相容於其他

處理器。對於記憶體記憶體內運算 (CIM)，記憶體不再只是儲存資料，還能在記憶體

內執行簡單的運算，執行完後，再將資料傳到中央處理器，而非只是搬資料至中央處

理器後才做運算，如此能減少資料搬移所造成性能和功率的損失。然而，一些靜態隨

機存取記憶體記憶體內運算面臨一些挑戰，如面積、表現、能源效率與產生不同資料

型態的模式與電晶體表現限制。記憶體內運算是一種 AI 加速器架構，運算上是將記憶

體內的資料，先在記憶體內先計算過，如此一來打破傳統透過處理器進行分析的馮紐

曼型架構。雖然處理器的運算速度遠快於記憶體內的讀寫速度，但處理器內的資料處

理速度仍會受記憶體傳輸頻寬所限制以及傳輸距離，因為資料在 DRAM 或硬碟上，會

需要很長的傳輸距離，而影響運算速度及功耗，相比下，記憶體內運算可以使用低功

耗、高效率的方式，在終端裝置上進行影像或語音辨識的能力。 

 

 此專題報告中的兩種分割電壓控制下靜態隨機存取記憶體的記憶體內運算支援兩

種神經網絡模型分別為 XNOR 神經網絡和修正後的二進制神經網絡 MBNN。在此專

題報告中，我們主要聚焦在修正後二進制神經網絡模型。為了實現較小的偏差電壓、

更短的讀取時間、更低的能源消耗、更小的晶片面積、穩健的操作以及更高的能效，

我們使用的靜態隨機存取記憶體內的記憶體運算並使用標準形態下靜態隨機存取記憶

體分割的字元線，其中包括動態輸入感知參考生成（DIARG）結構，與演算法有關的

非對稱控制（ADAC）結構和共模不敏感小偏移電壓模式感測放大器（CMI-VSA）以

及兩種分割電壓控制的靜態隨機存取記憶體（DSC SRAM）結構。在 25°C 以及典型的 

N 型氧化物－半導體場效電晶體和典型的 P 型氧化物－半導體場效電晶體的記憶體運

算模式之下，我們應用的共模不敏感小偏移電壓模式感測放大器（CMI-VSA）量測得

的最小偏差電壓達到了 36 毫伏特。 

 

    為了減少整體靜態隨機存取記憶體的面積，我們使用一些概念來實現兩種分割電

壓控制下靜態隨機存取記憶體的布局。並為兩種分割電壓控制下靜態隨機存取記憶體

的記憶體運算畫出 64 * 64 靜態隨機存取記憶體陣列製作的佈局，結果顯示比起之前標

準型態的 6 個電晶體的靜態隨機存取記憶體能縮小 0.12 倍的總體面積。 
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Abstract 

 
 Static Random Access Memory (SRAM) is a volatile memory (NVM) used as embedded 

memory in an integrated circuit. Over other types of memory its speed is fast such that it is 

compatible with processors. For computing-in-memory structure (CIM), the memory is no 

longer just for storing data, but can also perform simple calculations in the memory. After the 

computing execution, the data is transferred to the central processing unit. Not only just moving 

the data to the central processing unit to do calculations. By this way, it can reduce the 

performance and power loss caused by data movement. However, some difficulties that 

computing-in-memory (CIM) SRAM faces practical challenges in terms of area overhead, 

performance, energy efficiency, and yield against variations in data patterns and transistor 

performance. CIM is a kind of AI accelerator architecture. The actual calculation process is 

directly performed calculations in the memory through the data in the memory. 

 

 The actual analysis results will transmit to the processor, thereby breaking Von Neumann 

Architecture which completely analyzes all the data through the processor. Even if the 

computing speed of the processor is much faster than the memory read and write, the data 

processing speed will still be limited by the memory transmission bandwidth and transmit 

distance.  Because the data is on DRAM or hard disk, it will need a long transmission distance, 

which will affect the calculation speed and power consumption. In contrast, the ability of in-

memory operations to perform image or voice recognition on terminal devices with low power 

consumption and high efficiency. 

 

 This proposed DSC SRAM-CIM unit-macro supports two neural network models: an 

XNOR neural network (XNORNN) and a modified binary neural network (MBNN). In this 

project we mainly focus on the modified binary neural network (MBNN) model. To achieve 

low offset voltage, fast access time, lower power consumption, compact area, robust 

operations, and high energy-efficiency, our proposed SRAM-CIM uses a split-word-line 

compact-rule 6T SRAM, including a dynamic input-aware reference generation (DIARG) 

scheme, an algorithm-dependent asymmetric control (ADAC) scheme, a common-mode-

insensitive small offset voltage-mode sensing amplifier (CMI-VSA), and a dual-split-

controlled SRAM (DSC) scheme. The measured minimum offset of the voltage mode sensing 

amplifier (VSA) in our work reached 36mV in typical NMOS and typical PMOS (TT corner) 

CIM mode at 25°C. 

 

 In order to further reduce the footprint area, we also considered using some structure to 

implement the DSC6T SRAM layout. Using DSC6T SRAM CIM ARRAY layout the footprint 

area is 12% lower than that of a standard SRAM. 
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I. Preface 

 For deep-neural-network (DNN) processors, which are commonly used in artificial 

intelligence processors, product-sum operations mainly dominate the overall 

computation workload, while movement and storage of large volumes of data is also 

required. Thus, DNN processors are more likely to be implemented to artificial-

intelligence(AI) devices that require low-power consumption, low-cost and fast 

inference. Owing to the above-mentioned restrictions, usually binary DNN are used 

since they can reduce computation as well as hardware costs, making it possible to be 

used for artificial intelligence computing. 

 

 However, the memory bottleneck problem that conventional digital all solutions 

cannot solve still exists. Computing-in-memory (CIM) methods address these problems 

by enabling parallel computing, reducing the number of memory accesses, and 

suppressing intermediate data, since CIM structure allows for the data processing to be 

within the memory. 

 

 When we first encountered Computing-in-Memory (Processing-in-Memory) 

Circuits for Deep Learning, AI chips and other memory Integrated Circuits (SRAM, 

STT-MRAM, ReRAM, PCM, eFlash, 3D-NAND), we hoped that they could spark 

novel ideas and implementation methods. These thoughts inspired us to combine them 

while also using some structure for implementation to address the challenges that 

conventional SRAM models face, mainly concerning area overhead and energy 

efficiency. The methods and implementations that we adopted will be thoroughly 

mentioned and explained in the following sections. 

II. Introduction 

A. Principle analysis 

 In this project we solely implement the modified binary neural network (MBNN) 

mode, and the binarized function for it is as follows: 

 

 𝑥𝑏 = 𝑆𝑖𝑔𝑛(𝑥) = {
1         𝑖𝑓 𝑥 ≥ 0,
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

As for the binarized function for binary weights in MBNN, the function is: 

 

𝑤𝑏 = 𝑆𝑖𝑔𝑛(𝑤) = {
+1          𝑖𝑓 𝑤 ≥ 0,
−1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

 

  where 𝑥𝑏 is the binarized activation, and 𝑤𝑏 is the binarized weight. 

 

Fig. 1 shows the architecture and basic waveform of the MBNN SRAM-CIM 

structure. The inputs for the MBNN-based CIM operations are either “1” or “0” as 

mentioned above. This structure uses the algorithm-dependent asymmetric control 

(ADAC) scheme by changing the value of AF (1 or 0) to activate either the left sending 

mode or the right sensing mode. When AF = 1, if an input (IN[i]) is 1, then its WLL 

(WLL[i]) is “1” and its WLR (WLR[i]) is “0”. When the input is “0”, then both WLL 
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and WLR equal to “0”. When the input-weight-product result (IWP) of an MBNN 

operation is “+1”, the DSC6T cell generates a charge current on the BLL, and when the 

IWP is “-1” then it generates a discharge current. If IWP = 0, then the DSC6T cell does 

not generate any cell current to BLL. Since AF = 1, then we activate the left sensing 

mode, WLR = 0, thus BLR is disconnected from BLL to remain as a floating state. BLL 

then represents the total number of IWP results associated with each MBNN operation 

on activated DSC6T cells. Finally, the MBNN count can be then digitized by sensing 

VBLL. 

 

  Since the ADAC scheme specifies whether to use only WLL-BLL or WLR-BLR 

for sensing, ADAC + DSC6T consumes less IBL and power is reduced compared to 

conventional 6T cells due to less parasitic load on WLL/WLR (1 transistor per cell), 

less IBL on the selected BL, and no IBL from the opposite BL which is not selected. 

 

We use the algorithm dependent asymmetric control (ADAC) scheme to reduce 

power consumption by only activating one WL for each operation. The ADAC scheme 

combined with the split-WL feature of DSC6T cells reduces BL current and power 

consumption. This can be explained by a reduction in parasitic load on activated WLs 

(one transistor per cell), a reduction in BL current on the selected BL, and a lack of BL 

current from unselected BLs. 

 

 
Fig. 1. Structure and waveform of the MBNN SRAM-CIM[1] 

 

 

B. System design 

 The section above described the overall structure and operation of the whole circuit. 

In this section, we will focus on each scheme and segment of the MBNN SRAM-CIM, 

giving a more detailed description of its operations. 
 

1) DSC6T SRAM 

 

 Fig. 2 presents a schematic of a dual-split-control (DSC) 6T SRAM cell. The 

footprint area of this DSC6T cell is the same as that of the compact 6T SRAM cell but 

with split wordlines (SWL: WLL and WLR), and split VDD lines (CVDD1 and 
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CVDD2). This DSC6T cell achieves compact cell area and low VDDmin through the use 

of split wordlines, VSS, VDD . By lower one side VDD, DSC SRAM has lower power 

consumption compared to standard SRAM. 

  
Fig. 2. DSC6T SRAM Schematic and Waveform 

 

 Fig. 2 also presents the waveform of the DSC6T cell during read/write operations. 

For normal write and read operation, which is the same as those of conventional 6T 

SRAM cells, WLL and WLR are short concurrently. Lower power consumption was 

achieved by using the split-VDD depending on the value of CVDD1 and CVDD2. 

 

2) CMI-VSA 

 
Fig. 3. CMI-VSA Schematic and Three Phases 

 

 A sense amplifier is a read circuitry that is used when data is read from the memory, 

and senses the low power signals from a bitline that represents a data bit (either 1 or 0) 

stored in a memory cell, and amplifies the small voltage swing to recognizable logic 

levels so that data can be interpreted properly by logic. 

 

 The common-mode-insensitive small-offset voltage-mode sense amplifier (CMI-

VSA) as shown in Fig. 3 provides tolerance for a small BL signal margin against wide 
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VBL common-mode range. High power consumption on BL and BLB with multiple 

activated WLs and insufficient signal margin against input-offset of the sense amplifier 

for robust read operations. The CMI-VSA overcomes these issues. 

 

 The common-mode-insensitive small-offset voltage-mode sense amplifier employs 

three phases (PH1 − PH3) for sensing operations. By using different states of switches 

(SW1 − SW8), we have different performance. In standby mode, SW1 = SW2 = ON 

and SW3 = SW4 = OFF, while the CMI-VSA latches the previous result at its internal 

nodes. During sensing operations, WL signals are triggered to develop the VBL in the 

SRAM array and VREF in the DIARG scheme. For a given BL developing time, CMI-

VSA is enabled to implement the three phases. In PH1 (voltage development), SW3 = 

SW4 = ON and SW1 = SW2 = OFF to force the two inverters into an auto-zero state. 

This biases the CL and CR nodes at their respective trigger points. 

 

 In PH2 (pre-amplification), setting SW1 to SW4 = OFF, puts VCL/VCR/VAL/VAR in 

a floating state. Setting SW5 = OFF and SW8 = ON switches VINL from VBL to VREF 

and then couples (VBL − VREF) to VCL through C1, such that VCL = VTRP−L − (VBL − 

VREF). Setting SW6 = OFF and SW7 = ON switches VINR from VREF to VBL and then 

couples (VREF −VBL) to VCR through C2, such that VCR = VTRP−R + (VBL −VREF). This 

increases the voltage difference (VINV) between VCL and VCR to 2 × (VBL − VREF). 

 

 In PH3 (amplification), setting SW1 = SW2 = ON enables the two inverters to 

amplify the inverter voltage difference in order to generate a full swing for VCL and 

VCR. 

 

      In the end, the waveform that we made is quite similar to the IEEE paper. We even 

made a better sense amplifier compared to conventional sense amplifiers which can 

achieve an offset of only 36mV and still function correctly when tested on the 1024 

Monte Carlo test. 

 

3) DIARG 

 

 The dynamic input-aware reference generation (DIARG) scheme that comprises 

two reference columns of fixed-zero replica memory-cells (F0RC), a WL-combiner 

(WLCB), and a reference-WL-tuner (RWLT). The DIARG scheme for MBNN 

generates an appropriate reference voltage VREF based on the number of input = 1. 

When m WLs are activated, m corresponding WLCBs are enabled. Then, m number of 

IMC-C are generated on the BLL and m number of IMC-D are generated on the BLR. By 

this means, the reference voltage is generated based on the number of input = 1 values. 

 

4) WL Driver 

 

 For the WL driver, initially we tried to use a 6 to 64 decoder, but later we decided 

to let multiple input WL open at the same time, since in each operation multiple WLs 

can be activated at once to compute the input-weight product. In order to let multiple 

input WL open at the same time we use eight 3 to 8 decoders to achieve our goal. 

 

 

5) WLSW 
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 WL-selections switch (WLSW), which activates left-sensing mode if AF = 1 by 

asserting only the WLLs of the selected rows, when all WLRs are disconnected. 

Similarly, when AF = 0, it activates the right-sensing mode, and asserts the WLRs of 

the selected rows, while all WLLs are disconnected. This way, we could achieve the 

algorithm-dependent asymmetric control (ADAC) scheme from the WL side. 

 

6) SRAM Array 

 

 The 4K SRAM array is required to store a huge amount of intermediate data. In 

this simulation, we use a 64 by 64 SRAM array, namely a 4Kb SRAM, which also 

contains a header for each BLL and BLR, and a BLSW and VSA for each column. 

When using a conventional 6T SRAM array, both of the pass-gates (PGL and PGR) 

were simultaneously activated by the same word-line, such that BLL and BLR both 

consumed current for product-sum operations. In other words, we cause unnecessary 

waste of power resources, thus lowering the energy efficiency. To overcome waste of 

power, we use DSC6T SRAMs with only one pass-gate turned on, reducing the average 

current and power consumption of the DSC6T SRAM-CIM by 46.5%, compared to a 

conventional 6T SRAM array. Later, we design the SRAM layout and will be shown 

later. 

 

7) BLSW 

 

 Each of the BLLs is connected to its corresponding VSA when AF = 1 via a bit-

line selection switch (BLSW), whereas BLR = VDD is isolated from VSA. Then, VSA 

detects VBLL and directs its output (SAOUT).  

 

8) WLCB 

 

 The WL-combiner (WLCB) where n inputs are activated, n corresponding WL-

combiners are enabled. So we can view it as computing how many inputs are open. 

C. DSC6T  Structure Layout 

 

 We use the unidirectional method to draw the layout of the SRAM cell, which lets 

the poly-gate go horizontal. In this way, a similar process variation is achieved, and the 

layout is also presented as a rectangle. By presenting it this way, it makes it easy to 

arrange the cells. The contacts on the four sides of the layout can be shared with other 

cells on the top, bottom, left, and right side to reduce layout area. 

 

We put dummy cells around the 16 by 16 SRAM cell array. The SRAM array, with 

some dummy cells which are roughly the same as an SRAM cell. However, the dummy 

cell’s Q is connected to VDD and QB is connected to VSS to avoid floating voltage. If 

we let all originally BL and BLB in layer-1 moved to layer 2 and use the 3D via to 

connect layer-1 and layer-2. The area of the SRAM without putting BL and BLB is 

5440 µm²; and the one putting all metal two (BL and BLB) is about only 4780µm². The 

6T SRAM bit cell has 12% footprint area advantages over the 6T 2D SRAM bit cell. 
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D. Write Margin 

 Set the initial values of Q and QB as Q=1 and QB=0, and set BL from VDD to 0. 

When the voltage values of Q and QB are equal, then BL voltage is the write margin. 

 

 When PN ratio size becomes bigger, then the standard 6T SRAM WM comparison 

against DSC6T SRAM WM becomes bigger too. According to the measurement, 

standard SRAMs are 55% harder to write compared to the SRAMs using DSC. 

 

E. Power Consumption  

 Define VDDA is the voltage between CVDD1-CVDD2, and with a bigger P/N 

and W/L ratio, we achieve 63% and 56% of power consumption compared to standard 

SRAM, respectively. Using DSC scheme that one side VDD is lower than other side 

without affect SRAM function, it capable of lowering overall SRAM power 

consumption. This can be seen in Fig.4. 

 
Fig. 4. Power Consumption of DSC6T SRAM with different Ratios 

 

F. Hold Static Noise Margin  

 

 Disconnect the circuit that is originally connected to the two inverters, add the 

voltage source and sweep the voltage from 0 to VDD. Set WL to 0 to measure the hold 

static noise margin (SNM), and wait for the measured Q and QB to flip, then the voltage 

source is hold SNM.  The higher the value, the stronger the noise resistance is. 

 

 Using 1024 Monte Carlo, we find that in all corners at 25°C, the best case is slow 

NMOS and fast PMOS (SF) corner, which has a minimum of 328mV and a maximum 

of 394mV. Because PMOS uses the smallest size, a faster PMOS helps to increase its 

strength, making the strength of PMOS and NMOS equivalent, which is better for the 

overall circuit stability. However, the worst case is fast NMOS and slow PMOS (FS) 

corner, which has a minimum of 293mV and a maximum of 368mV. Because stronger 

NMOS and weaker PMOS make the overall circuit stability worse and also make the 

anti-noise ability worse. 
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G. Read SNM 

 Disconnect the circuit that is originally connected to the two inverters, and add the 

voltage source and sweep the voltage from 0 to VDD. Set WL to 1 to measure the read 

static noise margin (RSNM), and wait for the measured Q and QB to flip, then the 

voltage source is RSNM.  

 

 Using 1024 Monte Carlo, we find that in all corners at 25°C. The best case is SF 

corner, which has a minimum of 125mV and a maximum of 217mV. The worst case is 

FS corner, which has a minimum of 43mV and a maximum of 136mV. Because the 

stronger NMOS and weaker PMOS make the overall circuit stability and the anti-noise 

ability worse. The reason for the worst and best RSNM is the same as HSNM, and 

RSNM has WL open, so BL and BLB may affect the internal stability of SRAM, 

resulting in the SNM in reading being much lower than the SNM in holding. 

H. Sense Amplifier Comparison 

The sense amplifier that we implemented in this work is better than conventional 

ones in terms of the offset voltage. As mentioned earlier, the CMI-VSA can work with 

only an offset voltage of only 36mV and output successfully, while conventional ones 

might need an offset voltage of 4x to 5x of the CMI-VSA. In Fig. 17, we test out both 

sense amplifiers with an offset voltage of 36mV and run 1024 times Monte Carlo 

simulation. For the conventional sense amplifier, many simulations do not sense 

correctly, whereas the CMI-VSA does not produce any error. 

 

 
Fig. 5. Results of conventional SA and CMI-VSA with offset voltage of 36mV 

 

心得感想 

    經過一整年孟凡教授專題扎實的訓練，從一開始的文獻閱讀與上台簡報，向大家

彙整重點，並討論各領域文獻的優缺點與可解決問題的方向。最後再模擬文獻中所提

及的電路，以此為基本架構，再自己創新電路架構，以達到改善文獻中的缺點或達到

更好的電路表現。 

 

    在這次的獨立研究中，學習到了許多寶貴的經驗，例如在有限的時間內，增加文

獻閱讀的速度與技巧，並快速理解各篇文獻報告中的重點，熟悉建構與模擬電路的工

具並減少除錯的時間，同時培養訓練獨立思考與創新與解決前所未有的問題的能力，

然而，研究過程中遇到各種挑戰與問題，很多都需要進行取捨，如調大靜態隨機存取

記憶體的電容可能導致 bump 的 waveform 越大，但放大器的運作可以在更小的偏差電

壓 (offset voltage) 下運作，這就是設計電路架構所面臨的取捨 (tradeoff) ， 我們在設
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計中也經過了多次修正電路，並更改些周圍 (peripheral) 的電路架構與開關 (switch) 

的設計與較複雜的電路放大器 (sense amplifier) 架構，與隊友和 mentor的指導下，最

終得到超乎預期的結果-雖然製成不同，但只比文獻中提及的 20 到 50 mV 下還要大一

些的偏差電壓，讓放大器能有更好的放大效果和創新的兩個 VDD，來節省整體 64*64 

靜態隨機存取記憶體功率的架構。儘管在這長時間的獨立研究過程中遇到不少難題與

挫折，但克服這些問題後學到的也更多，著實感謝這段時光的自我淬鍊。 

 


